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Abstract

Humans cooperate in large groups of unrelated individuals, and many authors

have argued that such cooperation is sustained by contingent reward and punishment.

However, such sanctioning systems can can also stabilize a wide range of behaviors,

including mutually deleterious behaviors. Moreover, it is very likely that large scale

cooperation is derived in the human lineage. Thus, understanding the evolution of

mutually beneficial cooperative behavior requires knowledge of when strategies that

support such behavior can increase when rare. Here we derive a simple formula that

gives the relatedness necessary for contingent cooperation in n-person iterated games

to increase when rare. This rule applies to a wide range of payoff functions and

assumes that the strategies supporting cooperation are based on the presence of a

threshold fraction of cooperators. This rule suggests that modest levels of relatedness

are sufficient for invasion by strategies that make cooperation contingent on previous

cooperation by a small fraction of group members. In contrast, only high levels of

relatedness allow the invasion by strategies that require near universal cooperation.
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1 Introduction1

Unlike other mammals, humans cooperate in large groups of unrelated individuals.2

Examples include warfare, the construction of roads, canals and other capital facili-3

ties, and risk buffering behaviors such as food sharing and mutual aid. It seems likely4

that our ability to cooperate played a crucial role in the rapid growth and spread of5

human populations over the last 50,000 years [1, 2]. Beginning with Trivers’ sem-6

inal paper [3], many authors have argued that human cooperation is explained by7

reciprocity and other forms of contingent behavior. Because people can recognize a8

sizable number of individuals and remember their previous behavior, selection leads9

to a psychology in which the behavior of actors is contingent on the previous be-10

havior of others. Individuals help only those who have helped them in the past, or11

punish those who don’t cooperate in mutually beneficial activities. If, in the long12

run, benefits of sustained cooperation exceed the short term benefits of defection,13

then contingent strategies supporting cooperation can be evolutionarily stable. Such14

equilibria can explain the persistence of cooperation among unrelated individuals.15

However, showing that cooperation can persist is not enough. Under plausible16

conditions, contingent strategies can stabilize virtually any behavior including non-17

adaptive and maladaptive behaviors [4]. A complete explanation must explain why18

contingent cooperation is a likely evolutionary outcome. Moreover, contingent coop-19

eration, especially in sizable groups, appears to be very rare among primates [5], and20

thus it is very likely that the ancestral condition in the human lineage is noncooper-21

ative. This means it is not enough to explain the stability of contingent cooperation22

[6, 7, 8]; we must also explain how contingent strategies supporting cooperation can23

increase when rare. This is problematic because such strategies are altruistic when24

rare. Because other group members are unconditional defectors, rare contingent co-25

operators pay the cost of cooperation and benefit others, but do not gain any long26

run benefit. In a similar way, strategies that punish contingent on others punishing,27

must punish or make a costly signal of intent to punish in order to determine how28

many punishers there are in the group.29

For reciprocity among pairs, kinship provides an easy solution to this problem. If30

interactions are repeated many times, the benefits to reciprocity can be very large.31

This means that rare reciprocators can increase even if they have only a small chance32

of interacting with another reciprocator, and thus even low levels of relatedness can33

allow reciprocating strategies to increase [9]. Since population structure often leads34

to low but positive background levels of relatedness, there is a plausible explanation35

for the evolution of pairwise reciprocity.36

It is not clear whether relatedness can play a similar role in the evolution of37
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contingent cooperation in larger groups. Boyd and co-authors [7, 10] have presented38

models which suggest that the effect of relatedness diminishes rapidly with group39

size. However, these models assumed that groups are formed by sampling individuals40

with a constant relatedness to each other. Basic models of population structure are41

not consistent with this assumption because the biological processes that generate42

relatedness lead to interdependencies so that knowing that two individuals share a43

gene by common descent increases the probability that other members of the group44

also share that gene by common descent. For a given relatedness, this increases the45

likelihood that groups will contain enough cooperators to sustain cooperation. As a46

result, existing work underestimates the possibility that contingent cooperation can47

increase when rare as a result of assortment due to population structure [11, 12].48

Here we derive a rule that gives the relatedness necessary for contingent cooper-49

ation in n-person iterated games to increase when rare. This rule applies to a wide50

range of payoff functions, but requires that the strategies supporting cooperation are51

based on a threshold. Such strategies are common in the literature. For example, in52

the iterated public goods game, a plausible strategy is to cooperate during the first53

period, and then cooperate if a fraction θ of the n− 1 other individuals in the group54

cooperated on the previous interaction, otherwise defect (e.g. [6, 7]). Plausible pun-55

ishing strategies also incorporate thresholds [10, 4]. The derivation of this rule also56

assumes that interactions go on for a very long time, that groups are very large, and57

that relatedness is generated by island model population structure. We will present58

numerical results which suggest that this rule provides also useful estimates for the59

threshold relatedness when some of these assumptions are violated.60

2 The Model61

Individuals are drawn from a large population and interact T times in groups of size62

that may fluctuate, but is usually close to a common value n. During each interaction,63

they can express either an altruistic behavior A or a non-altruistic behavior N. Let δvx64

be the incremental effect of an interaction on the fitness of an individual expressing65

A given that a fraction x of the individuals in the group express A. (By fitness we66

mean the expected number of adult offspring of an individual. The altruistic behavior67

affects also the fitness of individuals that do not express the altruistic behavior, but68

as we will see, for the purpose of deciding when the altruistic behavior can invade, the69

amount by which it happens is not relevant.) Here δ ≥ 0 is a constant that gives the70

strength of selection, and that we will always suppose to be small (weak selection).71

We make two assumptions about the payoff function vx. First, vx < 0 when x = 1
n
.72

This means that social interaction reduces the fitness of an individual behaving73
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altruistically in a group in which no one else behaves altruistically. Second, vx is74

non-decreasing in x which means that increasing the number of altruists in a group75

either leads to increased fitness of altruists or has no effect. Social interaction has76

no effect on the fitness of a non-altruist in a group in which all other individuals are77

also non-altruists. (For technical reasons we also assume that vx is right-continuous78

and at most discontinuous on a finite number of points in (0, 1).)79

There are two heritable strategies. Cooperators express behavior A during the80

first interaction and continue to express A during future interactions if the fraction81

of individuals in the group expressing A during the previous interaction is greater82

or equal to θ. This means if the fraction of cooperators in the group is greater83

than θ, cooperators behave altruistically during all T interactions. We assume that84

vθ > 0 so that such sustained cooperation is mutually beneficial. Defectors never85

express the altruistic behavior. When cooperators are rare and groups are formed at86

random, virtually all cooperators are in groups without any other cooperators. Thus,87

cooperation cannot increase because cooperators experience a reduction in fitness in88

the first round compared to defectors, and thereafter the two types behave identically89

and receive no payoff.90

Cooperators can increase when rare only if groups are formed assortatively so that91

there is some chance that they benefit from long term cooperation. However, knowing92

the coefficient of relatedness within groups (R) alone is not, in principle, enough to93

determine whether cooperation can increase because fitness is a nonlinear function94

of the frequency of cooperators in a group; to calculate the expected fitness of rare95

cooperators the entire probability distribution of frequencies is required [11, 12, 13].96

Here we assume that groups are linked by migration in an island model so that each97

generation a fraction m of each group is replace by immigrants drawn at random98

from the population as a whole. We suppose that either the competition among99

individuals is mostly global, or if it has an important local component, then group100

size is sufficiently elastic to allow for average group fitness to increase with the101

number of cooperators in the group, and the excess production of groups with many102

cooperators to be released in the population at large, through migration. This is the103

regime that in [12] we called Hamilton regime, and which allows for the proliferation104

of costly cooperation, even when competition is purely local. As explained in [12], the105

needed variability in group size is of order δ, so that when selection is weak groups106

still have typical size close to n, and the computation of the distribution of alleles in107

groups can be performed assuming a fixed group size n, as we do next. (This differs108

from the inelastic island model [14] which assumes completely fixed group sizes and109

thus cannot accomodate average group fitness different from 1 and group-altruistic110

behavior.) If selection is weak, groups are large, migration rates low and cooperators111
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are rare, we argued in [12] that the distribution of the frequency of cooperators in the112

group of a focal cooperator is approximately given by a beta probability density with113

parameters 1 and l = 2nem, where the effective population size is given by ne = n/σ2,114

and σ2 is the variance of the number of adult offspring that each individual produces.115

(For the computation of the effective population size, see [15], pp.105,6 and note that116

he uses a group size N = 2n.) In the benchmark case of Fisher-Wright reproduction117

in the groups, the offspring distribution is Poisson with mean 1, and ne = n. The118

claim above, on the distribution of alleles in the group, follows from the fact that119

for the island model, the probability density for the fraction x of cooperators in a120

randomly chosen group is f(x) = beta(x|lp, l(1− p)) = Cxlp−1(1−x)l(1−p)−1 where p121

is the frequency of cooperators in the population and C is a normalization constant122

[16, 17, 15, 18]. The joint density that the focal is a cooperator and the fraction of123

cooperators is x is xf(x). Therefore, the conditional probability density that the focal124

is in a group with a fraction x of cooperators, given that the focal is a cooperator is125

proportional to xf(x). When cooperators are rare p→ 0, and the probability density126

for the fraction of cooperators in the group of a focal conditioned to be a cooperator127

is therefore, with the proper normalization, l(1 − x)l−1 = beta(x|1, l). This result128

holds for more general population structures [11, 12], with the island model as an129

important example, and thus the formulas derived here hold more widely.130

The direction of selection is obtained by comparing the average fitness of a focal131

cooperator with that of a focal non-cooperator. When cooperators are rare, nonco-132

operators are typically in groups with no cooperators, and hence, in the average, do133

not benefit from cooperation. Thus, the cooperative strategy can increase when rare,134

whenever the expected incremental fitness of cooperators due to social interaction is135

positive. This means that the minimum value of R for cooperation to spread when136

rare is implicitly defined by137 ∫ 1

0

beta(x|1, l)vxdx+ (T − 1)

∫ 1

θ

beta(x|1, l)vxdx = 0. (1)

The first term gives the expected payoff to cooperators during the first interaction,138

and the second term the additional expected payoff to cooperators in groups in which139

the frequency of cooperators is greater than or equal to θ and therefore cooperation140

is sustained. When the left hand side of (1) is greater than zero, cooperators will141

increase in frequency, and thus the value of R that causes (1) to be satisfied is the142

minimum necessary for cooperation to increase.143

Equation (1) can be used to compute the migration rate (m) needed for rare144

cooperators to proliferate, assuming a fixed incremental payoff per interaction vx,145

expected number of interactions T and effective group size ne. When these parame-146
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ters yield a small value of R, then l ≈ 1
R
−1 is large and (1) simplifies considerably. To147

see why, recall that the beta distribution has the density beta(x|1, l) = l(1 − x)l−1.148

This means that the probability that the frequency of cooperators in a group is149

greater than θ is (1− θ)l, and thus we can rewrite (1) as150

(T − 1)(1− θ)l
∫ 1

θ

beta(x|1, l, x ≥ θ)vxdx

= −
∫ 1

0

beta(x|1, l)vxdx, (2)

where beta(x|1, l, x ≥ θ) is the density conditioned on x ≥ θ. Observe that [(1 −151

θ′)/(1 − θ)]l → 0 as l → ∞ if θ′ > θ. This implies that as l becomes large, the dis-152

tribution of the unconditioned beta converges to that of a distribution concentrated153

on 0, and the distribution of the beta conditioned on being in [θ, 1] converges to a154

distribution concentrated on θ. Thus the integrals in (2) converge, respectively, to155

vθ and v0 as l becomes large. This implies then156

(T − 1)(1− θ)lvθ ≈ −v0. (3)

Solving (3) for l provides the following approximations for m = l
2ne

157

m ≈
ln
(

(T−1)vθ
−v0

)
−2ne ln(1− θ)

. (4)

The critical value of R can then be computed using the expression R = (1−m)2/(ne−158

(ne−1)(1−m)2), valid for arbitrary ne andm, and that is approximately 1/(1+2nem)159

when m is small. When this approximation holds, we obtain from (4).160

R ≈ − ln(1− θ)

ln
(

(T−1)vθ
−v0

)
− ln(1− θ)

. (5)

Error estimates (derived in the SI under mild additional conditions) indicate that161

the error is of order R2. In the SI, we also derive results for more general situations,162

including the special case in which vθ = 0. Because vx is non-decreasing in x, vθ and163

v0 are lower bounds on the integrals in (2), and therefore (5) gives an upper bound164

on the critical value of R.165

From the arguments above, we expect (4) and (5) to be good approximations when166

n is large and R is small which means that Tvθ
−v0 must be large. Numerical calculations167
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using the methods outlined in [11] show that, somewhat surprisingly, these formulas168

(especially the former) also give reasonably accurate approximations for the critical169

values of m and R when n and T take on modest values. Assuming Fisher-Wright170

reproduction in the groups, and weak selection, the probability distribution πk of171

the number k of cooperators in the group of a focal cooperator can be computed172

numerically for any values of n and m ([19] ((A17) in the Appendix), [11]), and173

then this distribution can be used to calculate the expected payoff
∑

k=1,...,n πkvk/n+174

(T − 1)
∑

k≥θ πkvk/n to the focal cooperator, and the critical value of m that equates175

this expected payoff to 0. This is the analogue of (1) when n is finite. Figures 1176

and 2 compare the approximation for the threshold value of R obtained from (4)177

to the exact values for two payoff functions: the linear public goods game in which178

vx = bx − c and a threshold function in which vx = −c for x < θ and vx = b − c179

for x ≥ θ. These two functions encompass a range of plausible payoff functions180

(e.g., [8, 10]). The approximation is very good for large n and T and provides a181

useful upper bound for smaller values. It is always better for the threshold payoff182

function than for the linear payoff function because the threshold function is the183

lowest possible payoff function compatible with a given value of v0 and vθ and a non-184

decreasing vx, and therefore for a given θ, it maximizes the threshold R among these185

payoff functions. Figure 1 has θ = 0.4, meaning that cooperation only continues186

after the first iteration if at least 40% of group members cooperate. Still the levels187

of relatedness required for cooperation to proliferate when rare are modest, even for188

large groups. In contrast, for large values of θ the threshold values of R are much189

larger. This is illustrated in Figure 2, where θ = 0.8.190

3 Discussion191

Equation (5) gives a simple approximation for the level of relatedness necessary for192

cooperative strategies to increase when rare. It does not depend on the form of the193

underlying fitness function, but does depend on two key assumptions: (1) Contingent194

strategies that support cooperation lead individuals to cooperate if the number of195

cooperators exceeds a threshold, and (2) the assortment necessary for cooperative196

strategies to increase when rare results from island model population structure (or197

other population structures, such as the two level Fisher-Wright population structure198

studied in [11], for which (1) holds, [12]). The analytical derivation of (5) also199

depends on the assumption that groups are very large and interactions persist for200

a long time. However, numerical calculations suggest that (5) also gives a useful201

approximation for the necessary amount of relatedness when group size is modest202

and interactions only occur relatively infrequently. Moreover, the approximate values203

7



of relatedness obtained from (5) are always upper bounds on the level of relatedness204

needed for cooperation to spread when rare. This means that they represent worse205

case scenarios for the spread of cooperation.206

The approximate expression (5) provides three insights about the evolution of207

contingent cooperation in sizable groups. First, notice that the first term in the de-208

nominator is the logarithm of the ratio of long run benefit to cooperators in groups209

with the threshold number of cooperators, (T − 1)vθ, to the short term cost of co-210

operating in groups with fewer cooperators, −v0. Social interactions which generate211

a substantial positive benefit at the threshold compared to the cost of unrewarded212

cooperation, or that are repeated frequently, can increase at lower levels of relat-213

edness. Second, ln((T − 1)vθ/(−v0)) = ln(T − 1) + ln(vθ/(−v0)). For interactions214

that are repeated many times it seems plausible that ln(T − 1)� ln(vθ/(−v0)), and215

when this is the case the threshold relatedness will be almost independent of the per216

interaction payoffs as long as vθ > 0. If also θ is small, then R ≈ θ/ ln(T ). Third,217

and most important, when θ → 1, − ln(1 − θ) grows rapidly with θ and diverges.218

This means that, all other things being equal, R → 1 in this limit, and therefore219

strategies that require high levels of cooperation to persist will increase when rare220

only when relatedness is high. In contrast strategies that cooperate even when only221

a minority of other group members cooperate can increase at much lower levels of222

relatedness.223

This last result suggest that high levels of cooperation are more likely to be sup-224

ported by contingent punishment than by contingent cooperation. Strategies that225

continue cooperating even when only a small fraction of others cooperate typically226

reach a stable polymorphic equilibrium in which the population displays a mix of227

cooperative and noncooperative strategies [6, 7]. Strategies that tolerate more de-228

fectors achieve lower frequencies of cooperators at equilibrium. Thus reciprocating229

strategies that behave altruistically when a small fraction of the group also behave230

altruistically can support on going cooperation, but will produce equilibria in which231

most individuals in the group do not contribute. Cooperation of this kind is ob-232

served. For example, in the United States public radio is supported by voluntary233

contributions by a small fraction of listeners — most free ride. However such strate-234

gies cannot support the widespread cooperation observed in many contexts. For235

example, virtually all Turkana men participate in warfare, even though the Turkana236

lack formal coercive institutions [20]. Our result is consistent with the idea that wide237

spread cooperation is supported by punishment of noncooperators. In the model pre-238

sented in [10], individuals punish non-cooperators if enough other individuals in the239

group are also willing to punish non-cooperators. Because even a modest fraction240

of punishers can motivate others to cooperate, such contingBoydGintisBowles10ent241
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punishment strategies can increase when rare at relatively low levels of relatedness242

and still stabilize cooperation at a high level.243
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Figure 1: The exact threshold relatedness necessary for cooperation to increase for
a threshold payoff function and a linear payoff function (IPG) compared to the
approximate value obtained from (4) and R = (1−m)2/(n− (n− 1)(1−m)2) as a
function of group size for θ = 0.4. On the left T = 10, in the middle T = 100, and
on the right T = 1000. In all figures vθ = 1 and v0 = −1. The values of R given
by (5) are the limits of the approximating curves as n becomes large (right side of
the graphs), and are, respectively, 0.19, 0.10 and 0.069. When (1) only a minority of
cooperators is necessary to sustain cooperation, (2) groups are of modest size, and
(3) interactions are repeated many times, only low levels of relatedness are necessary
for coperative strategies to increase.

Figure 2: The exact threshold relatedness necessary for cooperation to increase for
a threshold payoff function and a linear payoff function (IPG) compared to the
approximate value obtained from (4) and R = (1 − m)2/(n − (n − 1)(1 − m)2) as
a function of group size for θ = 0.8. On the left T = 10, in the middle T = 100,
and on the right T = 1000. In all figures vθ = 1 and v0 = −1. The values of R
given by (5) are the limits of the approximating curves as n becomes large (right side
of the graphs), and are, respectively, 0.42, 0.26 and 0.19. When most individuals
have to cooperate to sustain cooperation, substantially higher levels of relatedness
are necessary for cooperative strategies to increase when rare.
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