IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Statistical mechanics of reputation systems in autonomous networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
J. Stat. Mech. (2013) P08002
(http://iopscience.iop.org/1742-5468/2013/08/P08002)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 143.107.252.219
The article was downloaded on 21/08/2013 at 03:17

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2013/08
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

ournal of Statistical Mechanics: Theory and Experiment
An IOP and SISSA journal

Statistical mechanics of reputation
systems in autonomous networks

Andre Manoel' and Renato Vicente?

I Departamento de Fisica Geral, Instituto de Fisica, Universidade de Sao
Paulo, 05314-090, Sao Paulo-SP, Brazil

2 Department of Applied Mathematics, Instituto de Matemética e Estatistica,
Universidade de Sao Paulo, 05508-090, Sao Paulo-SP, Brazil

E-mail: amanoel@if.usp.br and rvicente@ime.usp.br

Received 28 November 2012
Accepted 13 July 2013
Published 6 August 2013

Online at stacks.iop.org/JSTAT /2013/P08002
d0i:10.1088/1742-5468 /2013 /08/POS002

Abstract. Reputation systems seek to infer which members of a community can
be trusted based on ratings they issue about each other. We construct a Bayesian
inference model and simulate approximate estimates using belief propagation
(BP). The model is then mapped onto computing equilibrium properties of a
spin glass in a random field and analyzed by employing the replica symmetric
cavity approach. Having the fraction of positive ratings and the environment noise
level as control parameters, we evaluate in different scenarios the robustness of
the BP approximation and its theoretical performance in terms of estimation
error. Regions of degraded performance are then explained by the convergence
properties of the BP algorithm and by the emergence of a glassy phase.
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1. Introduction

Ad hoc [1] and wireless sensor networks [2] work in the absence of a central authority and
are increasingly pervasive in modern computer systems. The secure operation of these
autonomous networks depends on the capability of establishing trust among network
entities. Usually it is reasonable to assume that reputation and trust are positively
correlated quantities and then employ a mutual scoring system as a source of data that
can be used to estimate reputations [3]-[5].

Here we are concerned with the part of a reputation system [6] that identifies ill-
intentioned individuals or malfunctioning devices by estimating reputations. This task
would be trivial if scores were a reliable representation of an entity reputation. Instead,
evaluation mistakes may happen or misleading ratings may be issued on purpose [7].

Reputation systems are particularly prone to attacks by malicious entities who can
corrupt the recommendation process [8]-[10]. This happens for instance when multiple
entities conspire to emit negative ratings about well-intentioned agents while emitting
positive ratings about co-conspirators. In another form of attack, known as a Sybil attack,
a single entity could impersonate others and trick the reputation mechanism.

The simplest algorithms employed by online communities use average ratings to
determine reputations. Despite having the advantage of being easy to understand, these
algorithms do not take into account the possibility of entities committing mistakes or
acting deceitfully, which often leads to inferior results. More sophisticated algorithms
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employ Bayesian inference [11] or fuzzy logic [12]. Recently, iterative formulas over looped
or arbitrarily long chains—the so called flow models—have also been proposed (e.g. the
PageRank algorithm [13]). For a more thorough exposition of the range of techniques
employed we suggest recent reviews, such as [3, 10].

In this paper, we employ statistical mechanics techniques to study the performance
of a belief propagation algorithm to approximately estimate reputations. This analysis
provides insights into the general structure of the inference problem and suggests
improvement directions.

The material is organized as follows. In section 2 we introduce the inference model, an
algorithm for estimating reputations and a performance measure. In section 3 we simulate
the algorithm and discuss the results. A theoretical analysis is presented in section 4
and phase diagrams are calculated. Section 5 discusses the dynamical properties of the
approximate inference that impact performance. In section 6 we discuss the algorithm
robustness by analyzing attacks, parameter mismatches and different topologies. Finally,
conclusions are provided in section 8.

2. Estimating reputations

We model a reputation system along the lines of [14, 15]. An entity ¢ = 1,...,n has a
reputation r;, and issues ratings J;; about other entities j = 1,...,n with j # i. We define
a set ) of ordered pairs that contains (i, j) if the rating that i issues about j is present.
We assume that ratings and reputations are related by a given function

J = f(T', {5}), (1)

where {{} is a set of random variables representing externalities such as, for example,
uncertainties affecting opinion formation or transmission. A model is defined by specifying
the domains of r; and J;;, the distribution of {¢} and the function f.

A good model should be able to describe realistic scenarios while remaining amenable
to analytical treatment. Ratings should represent true reputations, namely, J;; oc r;. The
model should also take into account emitter reputations, as we have to consider that an
unreliable entity may emit ratings defaming well-intentioned individuals or groups, and
that a sufficient number of such ratings can misguide the reputation system—the collusion
phenomena depicted in figure 1. A simple choice is

Jij = &ijrity, (2)

with §;; representing noise in the communication channel. We start by choosing r;, J;;, §i; €
{—1,+1}, with &; being a random variable such that &; = +1 with probability p (signal
level).

This choice of f(r,{¢}) mitigates the collusion phenomena, as J;; = —1 represents, in
the noiseless case, either an ill-intentioned positive recommendation about an unreliable
entity or a negative recommendation about a reliable entity issued by an unreliable node.
By introducing &;; we also build into the model misjudgments and transmission failures.
We assume a prior distribution for r supposing independence and a fraction ¢ of reliable
agents (reputation bias).
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Figure 1. Collusion: agents of bad reputation issue positive ratings about each
other and misguide the mechanism. Agents with good reputation are represented
by white circles, and those of bad reputation by gray circles; arrow labels indicate
whether a recommendation is positive (green) or negative (red).

Our goal is to infer 7 given J. For that we need the posterior distribution P(r|J),
which can be calculated with the help of the Bayes theorem to find

P(r|J) & P(J|r)P(r)

H (&) HPTZ (3)

(4,7)€Q

Notice that we can describe a +1 random variable with probability p for x = +1 by
the distribution P(z) o exp(a,z), with a, = $log(p/(1 — p)), since P(z) = p+*)/2(1 —
p)(lfx)/Q — p(l — p)elOg(p/(lfp))x/Z‘ ThlS YIeldS

P(r|J) x H exp(ayéi;) H exp(agr;) (4)
(4,5)€Q
X exp Z &ij + oy Z T (5)
( J)EQ
X exp |a, Z JiiTit; + — Z i || (6)
(4,)€Q

where a, = 1 log(q/(1 — q)).
doi:10.1088/1742-5468 /2013 /08 /P08002 4
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Alternatively, the dependence structure of the inference model may be represented by
a directed graph G = (V, E), with each vertex v € V standing for an entity, and an arc
(1,7) being connected if and only if (i, j) € €.

The methods of equilibrium statistical mechanics require a symmetric J, which can
be achieved by grouping terms as

Z Jij’f’ﬂ"j = % Z(JU + Jﬂ)’l"i’l“j,

(1,4)€Q i

where on the rhs we assume that J;; = 0 if (7, ) € 2. Here we consider only undirected
graphs, to say, both arcs (¢,7) and (j,4) are in G if (i,7) € Q. By replacing 3(J;; + J;;)
for J;;, we work with J;; € {—1,0,+1}, discarding dissonant opinions that, fortunately,
are few in many cases of interest [10]. The case where a single arc may be present can be
modeled by a simple extension that considers J;; € {—1, —%, 0, —l—%, +1}.

Given a sample of ratings {J;;}, our goal is to find an estimate 7 for the reputations
r while keeping the error

e(?’,'r)zé(l—?’.r), (7)

n

as small as possible.
A naive solution calculates reputations according to the majority of recommendations
(a majority rule)

7; = sgn <Z Jm) , (8)

keoi

where 0i stands for the neighborhood of the vertex i in G. Assuming that ratings are
produced according to equation (2) we can write

i = sgn [(Z §kz’7’k> Ti] . (9)

keoi

Thus we can calculate the probability of agreement between 7; and the real reputation
r; by considering that r, and &; are random variables sampled from P(r) and P(§) (while
keeping & = &ki), and by introducing a random variable A sampled from the degree
distribution of graph G:

[(A-1)/2]
— << > (2) wP (1 — w)”>> : (10)

n=0 A

with @w = pg+ (1 —p)(1—¢q), and ((-)), denoting the average with respect to A. Here, &7y
is a 1 random variable with parameter w (i.e., it is +1 with probability w). The sum of
a set of these variables is binomially distributed, and the expression on the rhs represents
the cumulative distribution.
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Figure 2. Factor graph and BP message-passing. Snapshot of a factor graph

representing the posterior (11). Variable nodes are represented by circles, factor
(t+1)

nodes are represented by small squares. At an iteration outgoing messages h, . ; j

(®)

are computed after combining incoming messages u,” .. When convergence is

attained we compute effective fields h; and the approximation for marginal
posteriors P(r;).

Until section 6 we assume a random regular graph G with degree c. Also, we deal
with a scenario such that the signal prevails, p > 0.5, and most of the nodes are reliable,
q > 0.5.

For an entity ¢ the inference task consists of maximizing the posterior for r
marginalized over every component except ¢. The posterior is factorizable and can be
put in the following form

P(r|d) = H exp(BJi;rir;) Hexp BBr;), (11)

( J)EG

where § and B are parameters which are optimally set at Nishimori’s condition [16]
B = a4 and B = ay/a,. Factorizable distributions such as this are well represented by
factor graphs [17]-[19], with variable nodes associated to each r; and function (or factor)
nodes representing the functions linking them, in this case the exponentials. Figure 2
zooms in a factor graph representation of the posterior (11).

Given this posterior distribution we calculate marginal distributions P(r;) =
er 4, P(r]J) efficiently by employing the message-passing scheme of belief propagation
(BP) on the factor graph associated with the posterior equation (11) [19]. In our case the
outgoing BP messages (see figure 2 for illustration) are

1)
h’zt—t] B_I_ Z uk*}l Jkl? k—»z) (12)
keodi/j

k—1

while u{” . = (1/8)tanh ™" [tanh(ﬁJ;ﬂ) tanh(ﬁhk_n)] are incoming messages.

doi:10.1088/1742-5468,/2013 /08 /P0OS002 6
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Figure 3. Estimation error for the majority rule. Average errors in simulations
(circles) are compared with theoretical errors calculated by averaging equation (7)
over (10) (lines). Averages are over 3000 runs, ¢ = P(r; = 1) = 0.7 or 0.8. Graphs
G are random and regular with degrees ¢ = 3 or 15, and n = 100. Error bars are
smaller than the symbols in all three curves.

[terating this set of equations until convergence we obtain {h;_ ., ul_ .}, which yields

i—7) Yi—j

an approximation for marginals P(r;) o exp(ﬁﬁm), with effective fields given by
hi=B+> uj_; (13)

This algorithm is exact on trees, but can be used in graphs of any topology, leading to
good approximations provided that the average cycle length is large [19].

After convergence of the BP scheme, reputations r; are estimated by marginal posterior
maximization (MPM)

7; = arg max P(r;) = sgn(h;). (14)

Ti

3. Simulations

As a basis of comparison we run the majority rule algorithm defined by equation (8) for
3000 scenarios with reputations r chosen randomly with reputation bias ¢ and symmetric
& with signal level p. In figure 3 we compare the average error in simulations of the
majority rule with the theoretical error calculated by averaging equation (7) over the
distribution (10). The majority rule is not very far from what is used in common reputation
systems on e-commerce websites. Note, however, that the error of this very simple scheme
can be larger than 1 — ¢ if the signal level p is low enough. The message is therefore
clear: in noisy environments, assigning good reputations by default may actually be more
effective than using the majority recommendation.

In figure 4 we compare the majority rule with the average over 3000 runs of the MPM
estimate computed with the BP algorithm. For convenience, the algorithm is presented as

doi:10.1088/1742-5468,/2013 /08 /P0OS002 7
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Figure 4. MPM estimate versus the majority rule. Comparison between the
average error of the majority rule (equation (8)) and of the MPM estimate
(equation (14)), for ¢ = P(r; = 1) = 0.7, a regular random graph with degree
¢ =3 and n = 100. For the majority rule we show theory and simulations, with
symbols larger than the error bars. For the MPM estimate we show the average
over 3000 simulation runs, with error bars representing one standard deviation.

a pseudocode in appendix A.? The gains in performance when the collusion phenomenon
is built into the inference model are considerable even in very noisy environments.

A detailed view of the error surface for the approximate MPM estimates in terms
of reputation bias ¢ and signal level p is depicted in figure 5(a). Two regions can be
discerned, with large error for low signal level (high noise) and low reputation bias.
Other average quantities can also be evaluated in the simulations in order to access the
algorithm’s performance. Figure 5(b), for instance, shows the average number of iterations
to convergence. A distinctive region is observed with degraded convergence time.

The true values p and ¢ of the signal level and reputation bias are usually unknown,
and the inference algorithm has to assume (or estimate) values p and ¢. However, both p
and ¢ are related to the observable fraction of positive ratings, w = P(J;; = +1), in the
following way

(2w—1) = (2p—1)(2¢ - 1)? (15)

and actually only one of the control parameters has to be estimated.

The dashed white lines in figures 5(a) and (b) represent fixed values of w in the p—¢
plane; due to (15), for a given w we have w < p < 1 and %(1 +v2w—1) <g<1. Ascan
be seen following the white lines, errors are small for p or ¢ large, when ratings are more
informative, while increasing for intermediate values.

Ideally, the parameters have to be set to the same values used to generate the data.
However, the environment can change without warning and we would also like to know
how the inference scheme would perform in such circumstances. By simulation we can
generate the vector r and the symmetric matrix £ as random variables with probability

3 Source code is also available at https://github.com/amanoel /repsys.
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Figure 5. Average error and number of iterations to convergence: 3000 runs
of the BP algorithm in a grid of values for signal level p and reputation bias
¢, with n =100 and ¢ = 3. In each run G, {r;} and {&;} are sampled and
ratings {J;; = & rir;} are calculated. Panel (a) depicts the average error as in
equation (7); panel (b) represents the average number of iterations needed for
convergence of the BP algorithm. The dashed lines follow fixed values of w, from
bottom to top: w = 0.51,0.53,0.6,0.7,0.8,0.9.

0.5
0.4
0.3
0.2
0.1

p estimated value
p estimated value

06 07 08 09 1 06 07 08 09 1

p true value p true value

(a) (b)

Figure 6. Empirical analysis for mismatched signal level p with the fraction of
positive ratings fixed to w = 0.6. Panel (a) empirical error and panel (b) average
number of iterations to convergence.

of being +1 set to ¢ and p, respectively, and then run the algorithm assuming o; and oy.
As w can be determined from the data, we assume it to be known, so once p and p are
chosen, ¢ and § may be calculated using equation (15).

Figure 6 depicts results of this simulations in the plane p—p for w = 0.6. Small
mismatches between p and p are in general well absorbed by the inference scheme.
Performance, however, deteriorates when estimates, in this case for the signal level, are too
optimistic or too pessimistic. Figure 8(b) also reveals a region with degraded convergence
times for optimistic estimates.

In section 4 we use equilibrium statistical mechanics to calculate the phase diagram
as a function of the control parameters p—q and p—p, and to explain regions of degraded
performance.

doi:10.1088/1742-5468 /2013 /08 /P08002 9
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4. Theoretical analysis

The posterior distribution in equation (6) suggests the description of the problem of
inferring reputations in terms of the equilibrium properties of a spin glass in an external

field
H(s|J,B)=— Y Jysis;—BY s, (16)

(4,5)€Q

where we designate the dynamic variable as s;, and the target variables r; are fixed
(quenched). The MPM estimates described in section 3 correspond to 7; = sgn(m,), with
m; = tanh(ﬁﬁi) representing local equilibrium magnetizations.

At Nishimori’s condition [16], the temperature and field are chosen as Sy = «, and
By = a4/a,, and the microstates of this physical system are distributed according to a
Gibbs measure

1
P(s|J) = EG—BNHMJ,BN). (17)

Other values of # and B, corresponding to misspecified p and ¢, can also be studied along
the same lines.

We calculate the equilibrium average error in equation (7), which corresponds to the
magnetization of the Hamiltonian in equation (16) (gauge) transformed with r;s; — s;.
As this Hamiltonian is not gauge invariant we now have to deal with a spin glass in a
random field

( ’5"“ B Z 5@]513] Bzrisi- (18)
(i,7)€Q i

Here {¢;;} and {r;} are quenched variables with P(§;; = §;; = +1) = p and P(r; =
+1) = q. The error e(7, 7) in the gauge transformed variables can be written as & = %(1 —
(sgn(m))), where m = (1/n)>".s; is the gauge transformed equilibrium magnetization.

In our analysis we employ the replica symmetric cavity method along the lines of [19,
20]. We start this section by calculating the thermodynamic properties at Nishimori’s
condition. We first write an equation for the distribution of cavity fields for the gauge
transformed variables as calculated by the BP procedure in equation (12)

c—1 c—1
= /Hdhip(hi) <<5 <h — Br — ZW(fuM)) >> ) (19)
i=1 i=1 r{&}
or, more concisely

= <<Br + Cz: ui (&, hz)>> ) (20)
=1 r{&}

with < indicating equality in distribution. In this context, h is the cavity field, and
1
ui(&iy hi) = Btanh_l [tanh(5¢;) tanh(Bh;)]

doi:10.1088/1742-5468 /2013 /08 /P08002 10
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are cavity biases [19, 21]. Note that we work here under the assumption that it makes
sense to describe fixed points of the BP equations (12) in terms of a unique density P(h).
That is the replica symmetry (RS) assumption.

We calculate numerical solutions to equation (19) by a population dynamics
algorithm (see appendix B for details) and then calculate thermodynamic quantities. The
magnetization is given by m = (tanh(3h)) i,» Where

=1 r{&}

is the effective field. Note that the sum here ranges from 1 to c.

The onset of a spin glass phase can be detected by finding divergences in the spin
glass susceptibility. Provided that the disorder is spatially homogeneous, the spin glass
susceptibility averaged over this disorder can be written as:

, 22
T7{£i}7g ( )

o = SN ([fs05) = (oo

where sy is a variable at an arbitrary central site, s, is an arbitrary variable at a site
separated from 0 by a chemical distance ¢ and N(¢) is the number of sites at a distance
¢ from 0.

The fluctuation-dissipation theorem, the symmetry introduced by averaging and the
BP equations (12) yield

. 2
> amo 8h0 (‘9’&.%0 3u.ﬂg
Xsg = ZN(@ 9 9 = ) (23)
/=0 aho U. o OU.—y 8hg r{&).G
where u._,g and u._,, represent incoming messages in a path connecting 0 to ¢. A sufficient
condition for s, to diverge is, therefore, that

2
lim P“‘H“] > 0. (24)

This quantity measures the sensibility of the incoming message at a central site 0 to
a perturbation in a message forming at a far outside distance ¢. In terms of cavity field
distributions we can write

o= ({5 ) ) @

A number of numerical methods can be used to evaluate p [21, 20]. Using population
dynamics (described in appendix B), we introduce two slightly different initial states such
that w)[i] — ue[i] = d with i =1,..., N and § = 107*. After a large number 7 of iterations
of the population dynamics algorithm we calculate

pr xS (ulli) = urli)® (26)

doi:10.1088/1742-5468 /2013 /08 /P08002 11
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Figure 7. Theoretical error at Nishimori’s condition: theoretical error & = %(1 -
<sgn(ﬁ)>ﬁ) for different values of p and ¢. For ¢ = 0.5, the model is gauge invariant
and a transition from a paramagnetic phase (to the left) to a ferromagnetic phase

is observed at p. =~ 0.853.

The order parameters m and p allow the identification of four different thermodynamic
phases: paramagnetic if p = 0, m = 0, ferromagnetic if p = 0, m > 0, glassy if p # 0, m = 0,
and mixed or ferromagnetic ordered spin glass for p # 0, m > 0.

To measure the theoretical error, we also calculate (sgn(h));. The theoretical results
depicted in figure 7 are corroborated by simulations depicted in figure 5(a). Under
Nishimori’s condition, p = 0 for all values of p and ¢, and thus no glassy or mixed phase is
present. Likewise, for all values of p,q > 0.5, m > 0, and the ferromagnetic phase covers
the whole diagram.

The same theoretical analysis can be repeated for the mismatched parameters case
introduced in the previous section, by setting § = o and B = o/ while considering
r; and & as quenched +1 random variables with parameters ¢ and p. Here again, the
theoretical error depicted in figure 8(a) reproduces the empirical error in figure 6(a). In
the p—p plane, however, a mixed phase also emerges as p > 0 (see figure 8(c)) for a region
of parameters depicted in figure 8(b). In this region, the free energy landscape becomes
rugged, and BP or any inference procedure will not find a globally optimal solution in
practical time. Also the RS cavity analysis does not necessarily provide asymptotically
correct results, so the thermodynamic quantities computed in this region may not reflect
the actual behavior of the system at equilibrium.

It is worth mentioning that the numerical evaluation of p yields slightly positive values
still inside the ferromagnetic phase in the p—p plane (see the two top panels of figure 8(d)).
We have verified, however, that these values can be arbitrarily reduced as the precision of
the floating-point representation employed in the calculation is increased, thus suggesting
the result follows from an underflow and that p is actually equal to zero in this region.
Interestingly, the region where this numerical phenomena happens is correlated to the
region of degraded performance in figure 6.

doi:10.1088/1742-5468 /2013 /08 /P08002 12
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Figure 8. Theoretical analysis for mismatched signal level p with the fraction of
positive ratings fixed to w = 0.6. Panel (a) shows the theoretical error, in good
agreement with simulations. Panel (b) gives the phase diagram, in which a mixed
phase emerges, partially explaining the degraded performance region. Panel (c)
p > 0 is the signature for the onset of the mixed phase as p increases. Panel (d)
shows the evolution of p throughout the population dynamics for p = 0.7 and
different values of p; as the mixed phase approaches, p converges to values which
can be made arbitrarily small by increasing the floating-point precision employed
in the calculations.

We observe that at least three rigorous results on phase diagrams of similar models
are available in the literature: (A) if the Hamiltonian is gauge invariant the Nishimori line
does not cross a spin glass phase [22]; (B) there is no spin glass phase in a random field
Ising model [23]; and (C) provided that the parameters employed in the inference task
are identical to those used to generate data (namely, we are at Nishimori’s condition), in
a random graph with bounded maximum degree the BP scheme converges to the correct
marginals in the thermodynamic limit [24].

In order to check our results we observe that choosing ¢ = 1/2 (o, = 0) yields a
gauge invariant model. Consistently with result (A), p = 0 over the line ¢ = 0.5 and only
paramagnetic and ferromagnetic phases are observed, with a transition around p. ~ 0.853
for our example (see figure 7). Result (B) is only relevant if we can choose parameters
such that &; > 0 (or p =1) for any (7,7) € €, any random field r;; and any B in the
Hamiltonian of equation (18). At Nishimori’s condition, however, p = 1 implies that
By = o0 and By = 0. Thus the model is a trivial ferromagnet and result (B) is irrelevant.
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Figure 9. Average spectral radius of the Jacobian of the BP dynamical system.
For each value of p and ¢ (p and p), the Jacobian’s spectral radius was computed
for 2500 runs of the algorithm and then averaged. Larger values of R correlate with
slower convergence times. Panel (a), at Nishimori’s condition, is to be compared
with figure 5(b). Panel (b), with a mismatch between p and p, is to be compared
with figure 6(b).

Yet if the inference model assumes p < 1 while §;; are generated with p = 1, rigorous
result (B) forbids either a spin glass or a mixed phase to show up. Accordingly, figure 8(b)
exemplifies a phase diagram for ¢ > 0.5 with no mixed phase for p = 1 (true value) and
p < 1 (estimated value). Finally, result (C) implies the absence of a mixed phase anywhere
at Nishimori’s condition, which is indeed the case, as p = 0.

The onset of a mixed phase explains in part the degradation in algorithm’s
performance for the upper left corner of the p—p plane. However, empirical observation
shows that convergence rates also worsen outside this region of parameters, as well as on
the p—q plane, even at Nishimori’s condition, where no glassy phase is to be found. In the
next section, we investigate this issue further.

5. Dynamical properties

In order to understand further the deterioration in the algorithm’s performance, we now
study the BP dynamical system. From equation (12), we obtain

opttD .
o O geay,  en
ohy.,  cosh®(Bhy.,) — tanh®(3)sinh®(Bhy_,)

where I(A) = 1 if A is true and I(A) = 0 otherwise.

The dynamical system in question has nc equations, one for each direction of each
edge on the graph. In order to study the linear stability of the BP dynamical system,
we have calculated the spectral radius of the Jacobian matrix evaluated at a fixed point,
namely, R = max [A(J)|, where J is a nc x ne matrix with entries Jyr; = Ohi_;/0h}_;.

The spectral radius gives us a measure of the convergence rate of the algorithm. In
fact, as figure 9 shows, regions where the value of R is larger coincide with those where
the algorithm on average converges more slowly.

Interestingly, this quantity may be also studied within the RS cavity scheme. The
population dynamics algorithm, which we have used to obtain samples of P(h), may be
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Figure 10. Decay of p(¢). Top panel: using population dynamics we find the rate
A of decay as a function of p for ¢ = 0.6. Bottom panel: average spectral radius R
for finite size (n = 100, 200). For comparison we also plot e=*/2. Finite size effects
are larger in the large p region.

also treated as a dynamical system (the so called, density evolution equations):

ul(-g) = %tanh1 [tanh(ﬁf) tanh(ﬁhl(-g))] ,

(e+1) = © (28)
h; = Br + Z Uiy
i=1

with 7 and £ independently sampled for each i, and 7(-) representing random indices, that
is y(+) ~ Uniform([N]).

In this context, the evolution of the order parameter p, p(£) = (1/N)S2N | (u/ —u;©0)2,
can be studied. As can be seen in figure 10, p(¢) decays exponentially at a constant rate
A, that is, p oc e™*. In the neighborhood of a fixed point the decay rate of /P is given by
the dominant eigenvalue of the Jacobian matrix. We thus expect the relation R oc e™*/?2
to hold, where R is the spectral radius of the Jacobian matrix. This relationship is clearly
depicted in figure 10—thus by computing the decay rate A for p, we also learn about the
algorithm convergence rate.

We have observed two mechanisms leading to performance degradation: the onset
of a glassy phase and the decreased stability of the BP fixed point. The former is a
limitation intrinsic to the inference problem, the latter an issue that probably could be
addressed by modifying the approximate inference algorithm. We, however, observe that
the stability of the fixed point seems to decrease as the parameters approach a mixed
phase, as p = 0.8536, ¢ = 0.5 defines a multicritical point in a model with ¢ = 3 [20], thus
suggesting this can also be an intrinsic limitation of the problem.
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Figure 11. Empirical and theoretical analysis at Nishimori’s condition for a
random graph with degree distribution given by equation (29) and w = 0.6. The
parameter ¢ is the average node degree while p is the signal level. Panel (a)
compares empirical (bars) and theoretical (lines) errors as a function of p for
(from top to bottom) ¢ = 3.7 to ¢ = 7.7 in steps of size 1 . Panel (b) depicts the
average number of iterations for the BP algorithm to converge.

6. Robustness

Up to this point our analysis has only considered ratings {J;;} distributed over a regular
random graph of fixed degree ¢ = 3 and issued exactly as assumed by the inference model.
In this section, we relax these assumptions to access both the performance of the algorithm
and the validity of the theoretical analysis under more general conditions.

6.1. Graph topologies

The set Q of ratings issued by network entities define a graph G with each vertex
representing an entity and an edge (7,j) being connected if and only if (7,7) € Q. The
theoretical analysis based on the replica symmetric cavity equation (19) relies on specifying
an ensemble of graphs represented by a particular degree distribution (or profile). In the
previous discussion we have used an ensemble of regular random graphs with a degree
profile given by A.(y) = 0 (y — ¢). A natural extension to that is allowing non-integer
values of ¢, for which we introduce:

1—(c—[c]) for v =[],
Ay) = e~ el for 7 = [c] +1, (29)
0 otherwise.

In this way for ¢ = 2.3 we would have 30% of the nodes with degree 3 and the remaining
with degree 2.

The empirical analysis is done by simulating instances sampled from this ensemble of
graphs. Figure 11(a) compares empirical and theoretical errors at Nishimori’s condition
as a function of p for several ¢ values, w = 0.6. Figure 11(b) depicts the average number of
iterations to convergence as a function of p and ¢, which is again explained by the stability
of the unique BP fixed point.
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Figure 12. Simulations in a square lattice, for w = 0.6 and different values of p.
Despite the short cycle lengths, the algorithm exhibits a good performance.

The BP algorithm calculates exact marginals and allows for optimal Bayesian inference
when the subjacent graph is a tree. The performance of the BP algorithm, however, can
be studied by simulation on any topology. Figure 12 shows the resulting performance
measures as a function of p for w = 0.6 and for G chosen to be a square lattice in two
dimensions. The average error is always smaller than 1 — ¢ and vanishes as p — 1, showing
that even in this case the BP algorithm may yield good results.

7. Attacks

Malicious entities may issue ill-intentioned ratings to trick the reputation system and
malfunctioning devices may issue erroneous ratings. These scenarios of targeted attacks
can also be considered by the inference model and studied within the same theoretical
framework and simulation techniques.

We suppose that a fraction f of the ratings are issued by noisy entities while the
inference process remains unchanged. Let us call the subset of noisy ratings €2y C €2. To
simulate this scenario, we uniformly sample and fix a fraction f/2 of the entities to be
noisy, issuing ratings as J;; = n;;, where n;; = 1;; is a =1 random variable with parameter
z= % and (i,7) € Qp—since we require J;; = J;;, the total fractions of noisy ratings will
be f. We then run the BP algorithm and study how the performance changes with f.

For the theoretical analysis we calculate performance measures averaged over every
disorder component: a regular random graph (with ¢ = 3 in our example), and symmetric
communication noise & and random ratings 7. As we are interested in checking the
algorithm robustness, we also assume that the inference scheme has no knowledge that
the reputation system is under attack.

We first rewrite the posterior by taking into account noisy ratings:
P(rign) o JI P& II P[P0 (30)
(i’j)EQ\Qf (ivj)EQf i

doi:10.1088/1742-5468 /2013 /08 /P08002 17


http://dx.doi.org/10.1088/1742-5468/2013/08/P08002

Statistical mechanics of reputation systems in autonomous networks

Figure 13. Factor graph for the posterior (31). A fraction f of the function nodes
represent noisy ratings (red squares).

Following the previous steps yields:

P(r|J) < exp |y Z Jiriry + o Z Jij + anri : (31)
(4,5) €\ (1,5)€Q i
Since the algorithm considers the ratings €2y as subject to the same communication
noise as regular ratings, we have a, = o,. The gauge transformed Hamiltonian for an
equilibrium statistical mechanics description is

H(S) = — Z 52‘]'81'8]‘ — Z nijrirjsisj — B ZT’Z'SZ'. (32)

There is a new term —Z(m)eﬂfnijrﬂ’jsisj in the Hamiltonian, which can be treated
by the inclusion of a new type of function node to the factor graph representation for the
posterior of equation (31). Figure 13 provides a snapshot of this factor graph. The replica
symmetric cavity description can then be written as

= <<Br + i u@-(h)>> : (33)
=1 &

where u;(h) = (1/8)tanh™ [tanh(B¢;) tanh(Bh;)] with probability 1 — f, and with
probability f

ui(h) = %tanh1 [tanh(Bn;rr;) tanh(Bh;)] ,

where 7; is a £1 random variable with P(n; = 1) = 3, r is the same used in equation (33)
and the {r;} are independently sampled from r.

Figure 14 depicts simulation results for the error in panel (a) and for the number
of iterations to convergence in panel (b). Panels (c) and (d) show the theoretical error
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Figure 14. Fraction f of nodes broadcasting random ratings with the fraction of
positive ratings fixed to w = 0.6. Panels (a) and (b) depict simulation results for
the error and for the average number of iterations to convergence. Panels (c) and
(d) show the theoretical error and phase diagram using the replica symmetric
cavity approach. As can be seen, the error for intermediate values of p increases
with f.

and the phase diagram using the replica symmetric cavity approach. The increased time
to convergence inside the ferromagnetic phase is explained by the decreased stability of
the still unique BP fixed point. Inside the mixed phase new fixed points emerge and the
inference process is fundamentally faulty, as can be seen in the top right corner of the
error surface.

8. Conclusions

The use of a belief propagation (BP) algorithm for approximate inference in reputation
systems has been introduced in [25, 26]. Here we extend previous work by calculating
performance measures using the replica symmetric cavity approach after expressing
the inference problem in terms of equilibrium statistical mechanics. We also study the
convergence times of the BP approach by looking at the algorithm as a dynamical system
and apply the framework to a basic scenario and to three simple variations.

The framework is very general and allows a study of the algorithm performance when
subjected to several scenarios of practical interest, such as the presence of collusions,
parameter mismatches and targeted attacks. Other questions of practical interest remain.
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Algorithms based on BP approximate inference seem to represent an interesting alternative
for reputation systems such as wireless sensor networks; however, implementation details
that have been purposefully ignored in our analysis certainly deserve a more thorough
analysis. For instance, sensors often operate with very limited resources, so that sampling
of ratings and running of the algorithm should be scheduled taking these limitations into
account. Also, faulty elements would behave differently with lower signal to noise rates.
In another direction, in a distributed scheme it would be interesting to study the role of
different prescriptions for the matrix J.

From a theoretical point of view reinforced belief propagation or survey propagation
techniques promise better results in the glassy phase. Also, expectation maximization-
belief propagation [27] could allow the algorithm to run without the need to supply the
signal level p as an input. For scenarios involving targeted attacks more information could
be built into the rating mechanism, introducing a duality relationship between the attack
and the inference algorithm.
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Appendix A. Computation of marginals using belief propagation

The algorithm takes as input a distribution P(h) from which the messages are initially
sampled, a maximum to the number of iterations t..., a precision e for convergence
and estimated values of p and ¢, {p,q}. In what follows, we have used P (h) = 6(h),
tmax ~ 100, € ~ 1077 and {p, ¢} = {p, ¢}—this last condition is later relaxed. The complete
pseudocode is as follows:
IHPUt: P(O)(h)a tmam €, {ﬁa Cj}a {Jij}; g
Output: {7;}

1: initialize {h;_;} sampling from P (h)
B — ap, B —az/op
while A > e and t < t,,,x do

fort=1—mn, j € 0ido

hi; = B+ 3 kepis; Wri(Jis o)

end for

A «— max |h;_>] — hZ—>j|

t —t+1, {hio;} — {hi;}
end while
if A < e then

for 1 =1ton do

hi = B+ 3 rcoi Ue—i(Jri, hi—i)

13: f, = sgn(iLZ)
14: end for
15: end if

— = =
Y P2
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Appendix B. Population dynamics

The population dynamics algorithm provides an approximate solution to (20) by iterating

ul(-g) = %tanh1 [tanh(ﬁf) tanh(ﬂhy))] ,

c—1
h(@rl) — Br + Zuy). (B.1)
j=1

7

We introduce two arrays of length N = 10%: h and u. At the first step, the elements
of w are initialized. We have considered two possible ways of initializing w: by uniformly
sampling from [—¢, €], ¢ = 1072, or by assigning ul(-o) =& (ie., tanh(ﬂhl(-o)) = 1); the results
obtained in our analysis were very similar for both. For discussions regarding the use of
different initial conditions, the reader may refer to [21, 20].

Next, the elements of h are updated according to the rule, with {u;} uniformly
sampled from w and r sampled from P(r); and the elements of w are calculated from the
respective element in h and ¢ sampled from P(&). The process is repeated 7 = 5000 times.
After this large number of iterations, the array h should be approximately distributed as
the real distribution P(h), and we are then able to calculate the desired averages.

In order to calculate m = <tanh(ﬁﬁ)>ﬁ, we may introduce an array h with the same

length N, and since h is given by a sum with an extra term, the array elements are

computed by simply summing the elements of A with some uniformly sampled element of
w. We then have m ~ (1/N)Y", tanh(h[i]).
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