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Abstract
Stable mixtures of cooperators and defectors are often seen in nature. This fact

is at odds with predictions based on linear public goods games under weak selection.
That model implies fixation either of cooperators or of defectors, and the former
scenario requires a level of group relatedness larger than the cost/benefit ratio, being
therefore expected only if there is either kin recognition or a very low cost/benefit
ratio, or else under stringent conditions with low gene flow. This motivated us to
study here social evolution in a large class of group structured populations, with
arbitrary multi-individual interactions among group members and random migration
among groups. Under the assumption of weak selection, we analyze the equilibria
and their stability. For some significant models of social evolution with non-linear
fitness functions, including contingent behavior in iterated public goods games and
threshold models, we show that three regimes occur, depending on the migration
rate among groups. For sufficiently high migration rates, a rare cooperative allele
A cannot invade a monomorphic population of asocial alleles N. For sufficiently low
values of the migration rate, allele A can invade the population, when rare, and then
fixate, eliminating N. For intermediate values of the migration rate, allele A can
invade the population, when rare, producing a polymorphic equilibrium, in which it
coexists with N. The equilibria and their stability do not depend on the details of the
population structure. The levels of migration (gene flow) and group relatedness that
allow for invasion of the cooperative allele leading to polymorphic equilibria with the
non-cooperative allele are common in nature.
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1 Introduction

In [44] we studied evolution of behavior in group structured populations, in a population
structure that we called two-level Fisher-Wright framework with selection and migration
(2lFW), which incorporates intra- and inter- group competition and migration. The meth-
ods used in that paper allow for the study of arbitrary group interactions, that affect the
reproductive success of group members as linear or non-linear functions of the number of
group member exhibiting each possible behavior. Those methods allow for the analysis
under an arbitrary strength of selection, but are limited to the problem of invasion of the
population by a rare mutant allele. Here we add the assumption that selection is weak, and
we obtain a characterization of all the equilibria and their stabilities in the same frame-
work, as well as in a large class of biologically relevant generalizations. This allows us to
identify three regimes, determined by demographic parameters of the model. (1) When the
migration rate among groups is sufficiently high, invasion by a rare mutant social allele is
not possible. (2) When the migration rate is sufficiently low, invasion happens and leads
to fixation. (3) For intermediate values of the migration rate, invasion happens and leads
to a polymorphic equilibrium. For some significant models of social interaction (e.g., it-
erated linear public goods games with contingent cooperation [20, 7, 44], threshold payoff
functions arising from instance from coordinated punishment [2, 6]) all three regimes occur.

We will consider a range of population structures that extend 2lFW in various natural
ways. In 2lFW groups compete directly and more efficient groups split and replace less
efficient ones (see [44] for a detailed introduction, or Section 2 for a brief introduction).
In Section 2 we extend the 2lFW population structure in four ways. In Gen.1 we will
allow for a separation of the time scales in which groups compete and in which individuals
reproduce. In Gen.2 we will assume that groups may or not replace other groups, but
more efficient groups will become larger than the less efficient ones, and contribute more
migrants to the population, allowing cooperative alleles to spread. In Gen.3 we will allow
for arbitrary patterns of recolonization, for occasional formation of new groups, and for
differential migration rates depending on phenotype, group size and group composition.
And in Gen.4 we will allow for more general reproductive systems than the Fisher-Wright
one.

Importantly, our characterization of the equilibria and their stability (Sections 4 and
5) is essentially the same for all the population structures that are considered, suggesting
a substantial level of generality. In particular, the conditions for invasion of a rare allele,
obtained in [44] are extended to this large class of population structures, when selection is
weak. This is important because in [44] these conditions were used to show that cooper-
ative and even strongly altruistic alleles can invade a group structured population under
realistically modest levels of group relatedness (realistically high levels of gene flow; as
reported, e.g., in [17] (Tables 6.4 and 6.5), [15] (Table 4.9) and [5]), produced simply by
viscosity, without any kin-recognition mechanism. Particularly noteworthy are two facts.
First, conditions for invasion do not depend on the relation between the time scales in which
individuals reproduce and groups compete (Gen.1). Group competition can, for instance,
occur in the form of occasional direct conflict, which does not need to take place often (in
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the time scale of the individuals generations) for selection to favor cooperative alleles. This
follows from the fact that carriers of cooperative allelles only incur reproductive costs when
cooperation is needed, i.e., at times of conflict, in this example. So that the time scales
in which costs and benefits are relevant are both the time scale of group competion and
therefore are the same. Second, even when each group creates a single group in the next
generation, so that groups do not compete directly, and with regulation of the population
occuring only at the group level (Gen.2), the conditions for invasion are not changed, and
invasion can occur under the same realistic conditions. This is due to the elasticity in the
groups size, that allows for groups with more cooperators to be slightly larger. Since we are
only considering weak selection, that enlargement effect will be small and hard to observe
in practice.

The tools that we provide here for computing equilibria/stability are easy to implement.
And when groups are large they simplify into expressions that only depend on the scaled
gene flow parameter, or alternatively on the standard group relatedness parameter. In this
way we provide an easy way to analyze evolution of social behavior under weak selection
in group structured populations. As we explained in [43], one of the most commonly used
approaches to that problem, the Taylor-Frank method [48, 46, 51, 12], assumes implicitly
that marginal fitness functions are linear functions of the number of mutants in a group.
In other words, the reproductive success of group members has to be described in good
approximation by a linear public goods game. The same remark applies to any methodology
in which one expresses the fitness of a focal individual in terms of partial derivatives with
respect to the focal individual’s phenotype and the phenotype of the individuals with
whom the focal interacts, as in [40, 27, 28]. Our approach allows instead for arbitrary
marginal fitness functions, that typically result from complex interactions involving several
individuals [20, 7, 25, 3, 18, 12, 49, 2, 13, 8, 45, 36, 19, 4, 5, 6]. This feature of our approach
also distinguishes it from and makes it much more applicable than approaches based on
interactions between pairs of individuals (diadic interactions) [38, 26].

Our results help explain the common occurrence of polymorphic equilibria between co-
operators and defectors in nature [19], [14], [39], [13]. As pointed out in [39], when the
reproductive success of group members is modeled as a linear public goods game and selec-
tion is weak, invasion leads to fixation, without the possibility of polymorphic equilibria.
That paper explored strong selection as an alternative way of obtaining polymorphic equi-
libria. Our results show that the issue is not necessarily one of strong versus weak selection,
but that the non-linear nature of the interaction in the groups may yield those equilibria
even when selection is weak.

2 Population structures

We begin with a brief reprise of the 2lFW framework (see [44] for further motivation and
details). In 2lFW haploid individuals live in a large number g of groups of size n, and
are of two genetically determined phenotypic types, A or N. Generations do not overlap,
reproduction is asexual and the type is inherited by the offspring. (Except when stated
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otherwise, we suppose that mutations do not occur within the time scales being considered.)
The relative fitness (w) of a type A, and that of a type N, in a group that has k types A, are,
respectively, wAk = 1+δvAk and wNk = 1+δvNk , with the convention that vN0 = 0, i.e., wN0 = 1.
The quantities vAk and vNk represent life-cycle payoffs derived from behavior, physiology, etc.
The parameter δ ≥ 0 indicates the strength of selection. When δ > 0 is small, selection
is weak, and we will also refer to the payoff functions vAk and vNk in this case as marginal
fitness functions. The creation of a new generation in the 2lFW through inter- and intra-
group competition, followed by migration at rate m, is described as follows. Fisher-Wright
intergroup competition: Each group in the new generation independently descends from a
group in the previous generation, with probabilities proportional to group average fitness

w̄k =
kwA

k +(n−k)wN
k

n
. Fisher-Wright Intragroup competition: If a group descends from a group

with k types A, then it will have i types A with probability Pk,i = bin(i |n, kwAk /nw̄k), where
the binomial probability bin(i|n, q) is the probability of i successes in n independent trials,
each with probability q of success. Migration: Once the new g groups have been formed
according to the two-level competition process, a random fraction m of the individuals
migrates. Migrants are randomly shuffled. Note: The assignment of relative fitness to the
groups in the fashion done above is a necessary and sufficient condition [22] for individuals
in the parental generation to have each an expected number of offspring proportional to
their personal relative fitness.

We denote by fk(t), k = 0, ..., n, the fraction of groups in generation t that have
exactly k types A. And we denote by p(t) =

∑n
k=1(k/n)fk(t) the frequency of types A

in the population. Because the number of groups is large, by the law of large numbers,
(f0(t), . . . , fn(t)) evolves as a deterministic (non-linear) dynamical system in dimension
n + 1. Our main concern in this paper is in finding the stable and unstable equilibria for
this dynamical system. This will be done under the assumption that selection is weak, i.e.,
δ << 1.

2lFW will be generalized in several ways in this paper. These generalizations are moti-
vated by biological considerations and, under weak selection, create little additional mathe-
matical difficulties. We motivate and introduce the generalizations in Gen.1 - Gen.4 below.
We then summarize the assumptions that we require, in a more abstract fashion, at the
end of the section.

(Gen.1) Separation of generation time and competition time scales: In 2lFW,
each group produces in the next generation a number of offspring groups that has a Poisson
distribution. This may not be realistic in several biological applications, and therefore we
will make the following more general assumption. Each group in generation t produces in
the next generation a random number of groups with a given distribution (that does not
depend on the number of groups g) and has mean proportional to its average group fitness
(w̄k if it has k types A and n − k types N). The numbers of groups created in generation
t+ 1 by the g groups in generation t are independent random variables, conditioned on the
total number of groups in generation t+ 1 to be again g. These assumptions allow one to
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use the law of large numbers as above, and also in Section 3 below. This extension of the
framework allows for important applications, in which groups typically create a single group
in the next generation, but occasional extinctions and recolonizations allow also for a group
to create 0 or 2 groups. This generalization allows for a separation of the time scales in
which individuals reproduce (1 generation) and the possibly much longer time scale in which
groups create new groups. The kinds of cooperative behaviors that we have in mind here are
those that only take place when there is direct group competition (e.g., inter-group conflict,
or competition among groups for space opened by another group’s extinction). In this way
the inter-generation time scale is not the same as the scale of cooperation and competition
within and among the groups. Those time scales of cooperation and competition are the
same and are given by the time scale of group reproduction/extinction. In the analysis in
this paper, we never have to consider what the distribution of the number of groups created
by a group is (only the mean of this distribution matters), so that this generalization incurs
no mathematical cost at all. (This is also the case of all the results in [44], including the
results under strong selection, which therefore extend with no change to the population
structures defined by Gen.1.)

(Gen.2) Variable group size, local regulation: To motivate a second generalization of
the 2lFW, consider the special case of the generalization introduced in the previous para-
graph, in which each group creates exactly one group in the next generation. For instance,
each group might be located in a different habitat. In this case the population structure is
the well known infinite island structure. Now, each group has size n and generates exactly
one group of size n. This implies that the average absolute fitness (expected number of
offspring) of members of each group must be 1, and therefore each group must have the
same relative fitness. But this is incompatible with the behavior of types A benefiting (in
terms of reproductive success) other members of their group at a cost (in terms of repro-
ductive success) to themselves that is lower than the benefit produced. In such situations,
the average fitness of the members of groups with many cooperators must be larger than
that of groups with few cooperators (cooperative and altruistic behavior should be defined
as “benefiting the group”, or more precisely, benefiting the average member of the group,
in reproductive terms). In conclusion: there is no room for cooperative/altruistic behavior
in this population structure, as it stands. This is the setting of [46], which is often referred
to for this conclusion. By assuming a fixed number n of members in each group, we force
w̄k to be independent of k. Biological populations often admit elasticities in population
and group size that are not incorporated in this formulation [47]. But because we will only
consider weak selection (δ << 1) in this paper, we can easily extend the framework to
accomodate this sort of elasticity, without having to be concerned with the details, and
without affecting the analysis. To see this observe two facts. First, the assumption that
all the groups have size n in 2lFW is just a mathematical idealization/simplification of a
population in which there is a typical group size close to n most of the time. Second, all
the fitnesses are different from 1 by a term of order δ. Keeping these facts in mind, we
generalize now the 2lFW framework, by allowing group size to be different from n, but
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only with probability of order δ. For this purpose, we suppose that in each generation,
each group is created with a random size that has a distribution that depends on the size
and composition of its parental group in an appropriate way. If the parental group has size
n, then the size of its offspring groups concentrates almost all the probability on the size
n, except for a probability of order δ. For other sizes of the parental group, we suppose
that its offspring groups have positive probability (even if δ = 0) of having size n. Under
these conditions in each generation all but a fraction of order δ of groups will have size n.
And following the history of any single group, it will have size n almost all the time, the
exception being a fraction of generations of order δ. Intuitively, n is the typical group size,
but ocasional deviations are allowed, where “ocasional” is quantified by δ. Now, since the
fitnesses w̄k only differ from 1 by a term of order δ, this new framework can accomodate
any such fitness function, meaning that the expected size of a group whose parent group
has k types A and n−k types N will be precisely w̄k. (Even if the framework only allows for
group sizes n− 1, n and n+ 1, this is sufficient flexibility to allow for any fitness functions
wAk , wNk of the kind that we are considering. This intuitive idea is checked in detail in
Appendix A, where further biological considerations are also discussed.) Note that when
δ = 0, as in Section 3, groups will always have size n, so that this generalization is of
no consequence in that section. When δ > 0 is small this is not the case, but typically
groups still have size n. And because the case of small δ > 0 can be analyzed as a small
perturbation of the case with δ = 0 (separation of time scales), again the generalization in
this paragraph will be of no consequence in Sections 4 and 5, where weak selection will be
analyzed in this way.

(Gen.3) Exceptional groups, exceptional migrants, weakly variable migration
rates, variable number of groups: When groups vary in size, the migration patterns
in large and small groups can differ from the typical ones. As in Gen.2 above we can
incorporate this generalization into the mathematical analysis provided that except for
probabilities of order δ, groups will have size n and behave regularly. For the same reason,
a fraction of order δ of migrants may behave in a way that is different from the regular one,
even when they come from groups of size n. There is no restriction on the migration patterns
of the exceptional migrants. These considerations allow for instance for the inclusion in the
framework of groups that temporarily have size 0, and may represent an empty habitat.
Such an empty habitat may, for instance, be colonized by migrants from the migrant
population, without having a parental group, or alternatively be colonized by a single
parental group. The recolonization scheme will not affect our analysis and results, since
in each generation only a fraction of order δ of the groups may have been recolonized in
this generation or descend from a group that was recolonized recently. In other words, if
we select a group at random in some generation, it is likely (except for probability of order
δ) to come from a lineage of regular groups deep into the past. Similarly, we can allow
some migrants to form a completely new group (which then has no parental group), but we
suppose that in each generation, only a fraction of order δ of migrants behaves in this way.
Moreover, all the individuals may migrate at rates that depend on their type and that of
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the other members of their group, but for groups of size n this variability must be within
bounds of order δ. This means that the migration rate of an individual of type ∗ (A, or
N), in a group with a total of k types A and n− k types N can be of the form m(1 + δu∗k),
where u∗k are arbitrary. Some of the assumptions above imply that the number of groups is
not constant, and it is natural to assume that it is regulated by ecological forces towards
the typical number g. This idea can be incorporated into the mathematical framework, by
assuming that, if in generation t the number of groups is gt, then the fitness of the groups
is multiplied by a regulation factor H(gt/g), where H(1) = 1 and −1 < dH(s)/ds < 0.
(These assumptions on H imply that when the number of groups is smaller than g it tends
to grow and when it is larger than g it tends to shrink, and that it does not tend to
evershoot the target value g.) Under this assumption, there is no need to condition (as
we did in Gen.1) on the total number of groups being created in a given generation. We
instead simply suppose that each group creates a number of groups with a distribution that
only depends on its group fitness (with the factor H(gt/g), common to all the groups).

(Gen.4) General intragroup reproduction system: Biological considerations may
require the distribution of types of members of a group to depend on the distribution of
the types of the members of the parental group in a way that is different from that given
by the Fisher-Wright sampling Pk,i = bin(i|n, kwAk /nw̄k). We can assume an arbitrary
intragroup transition matrix Pk,i, under the biologically meaningful conditions that when
δ = 0,

∑
i iPk,i = k (neutral drift) and P0,0 = Pn,n = 1 (no mutations). Generalizing the

population structure in this fashion produces some minor but cumbersome complications
in (2), in Section 3. For simplicity we will only compute the more general expression in
Appendix B. Other than this, all the statements in Section 3 (no selection: δ = 0) and
Section 4 (weak selection: small δ > 0) hold for a general intragroup transition matrix
Pk,i. Additional, and again biologically meaningful, conditions on Pk,i will be needed for
the results in Section 5 (case of large group size n and small migration rate m) to hold. For
simplicity we will restrict ourselves to Fisher-Wright intragroup sampling when providing
numerical examples in Section 6. But as we will explain in Section 5 and Appendix B,
when n is large, these numerical results should also be good approximations under broad
conditions on the intragroup sampling scheme.

In the following sections the setting is always that of 2lFW possibly generalized by
Gen.1, Gen.2 and Gen.3. Everything will also apply under Gen.4, unless stated otherwise,
in which case the appropriate modifications needed are presented in Appendix B. Even
additional generalizations would be covered by the results, provided that they satisfied the
assumptions stated explicitly below. It may be surprising that so many different aspects of
the population structure will produce almost no difference in the analysis and the results.
This is a feature of weak selection. The key fact is that the reference population structure
with δ = 0 is the same and that it can be easily analysed. The evolution under a small
δ > 0 is then a perturbation to this reference system, and to first order in δ does not depend
then on the details of the perturbation. This makes the concept of weak selection a very
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powerful tool in shedding light on evolutionary patterns. (In contrast, the analysis under
strong selection is highly dependent on the population structure.)

The assumptions used in Section 3 are:

Assumptions about the reference population structure (δ = 0): (1) From gener-
ation t to generation t + 1, each group produces independently (possibly conditioned on
the total number of groups produced being gt+1 = g) a random number of groups with
a common distribution with mean H(gt/g), where H is a regulation function that has
H(1) = 1 and has derivative −1 < dH(s)/ds < 0 (as in Gen.3). (Note that if we condition
on gt = g, in each generation, then each group must produce in the average one group in
the next generation.) (2) Each group being created has n individuals, and the number i of
individuals of type A in this group, conditioned on the number k of individuals of type A
in its parental group, is given by a transition matrix P (k, i) that satisfies

∑
i iPk,i = k and

P0,0 = Pn,n = 1 (see Gen.4 for motivation). (The case of Fisher-Wright sampling is defined
by P (k, i) = bin(i|n, k/n).) (3) Once a new generation is created, migration occurs at rate
m, with migrants being randomly shuffled.

The assumptions that are required for the perturbation approach used in Section 4 are
also simple to state:

Assumptions on weak selection (of strength δ): (1) Suppose that a focal individual
is selected at random in a given generation, and we observe how many individuals of type
A and of type N are in the focal’s group. We assume that except for probabilities of
order δ there is no difference in taking this sample from the actual population or from
the reference population with δ = 0. (Formally, we are requiring the distance between
the two distributions in total variation to be at most of order δ. This means that the
probability of finding a given composition of the focal’s group, when computed using the
actual population or the reference population, only differ by an amount of order δ.) (This
is precisely what we observed to hold in Gen.2 and Gen.3). (2) The average number of
offspring of a randomly chosen focal individual who is in a group with a total of k types
A and n − k types N is proportional to w∗k = 1 + δv∗k, where * is the type, A or N, of the
focal individual. (Note that we do not need to make any assumption about these relative
fitnesses when the size of the focal’s group is different from the typical size n.)

The separation of the conditions in two sets, one defining the restrictions on the δ = 0
population structure, and one specifying how “δ effects ” are allowed to affect it, is a central
element of our analysis. The idea of separation of time scales associated to weak selection,
that we will exploit in Section 4 is a standard one [40, 27, 41, 31], but in the literature one
often assumes a population structure (Wright’s infinite island structure is a very common
choice) that is not affected (even slightly) when δ is positive. (For instance this is the case
in [46], and as we explained in Gen.2, for this reason the setting of that paper rules out the
possibility of altruistic behavior.) But weak selection can be the result of a weak force that
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affects the reproductive success of individuals through its slight effect on the population
structure (e.g., rare extinction of groups due to natural disasters or warfare). This idea is
incorporated in the very mild restrictions that are being imposed on the effects of order δ.
The complete flexibility in the kinds of δ effects that can modify the population structure
allows for a large range of natural and biological processes to be described in a concise
simplified way.

Should one generalize the population structure further? Two of the constraints on the
reference (δ = 0) population structure that will be used in Section 3 are the fixed size
of groups, and the completely random unstructured migration at rate m (each individual
once born is a migrant with probability m independently of anything else, and migrants
are randomly shuffled). Releasing these constraints to allow say for groups of other sizes
in the reference population, or structured migration according to some migration matrix,
would require important modifications in Section 3. Such modifications are amenable to
some extent to the methods of population genetics, but substantially more eleborate than
the case treated here. It is to avoid such technical issues that, up to effects of order δ,
we restrict ourselves here to groups of fixed size and to unstructured migration. These
are typical idealizations of population with groups sizes that fluctuate around some typical
value, and have migration ranges that are not very short.

3 Neutral drift

Before studying the evolution of p(t) under weak selection, we consider the case in which
selection is completely absent, i.e., δ = 0. In this case, there is no bias towards types A or
N. Hence, each individual in generation t is of type A with probability p(t− 1), and again
by the law of large numbers, p(t) = p(t− 1). We can therefore regard p(t) = p as constant
in the following computation. When a new generation is being born, each individual in a
group has its type, independently, with probability 1−m sampled from the parental group
of its group, or, with probability m sampled from the metapopulation, where types A occur
with frequency p. Therefore, assuming that the intragroup transition matrix is given by
Fisher-Wright sampling (see Appendix B for the general case), the probability fk(t) that a
group selected at random in generation t will have k types A will satisfy the recursion

fk(t) =
∑
j

Tj,k fj(t− 1), (1)

where
Tj,k = bin(k|n, (1−m)(j/n) +mp). (2)

This means that (f0(t), ..., fn(t)) evolves as the probability distribution of a Markov chain,
with transition matrix Tj,k and converges to its stationary distribution that we denote by
ϕ(p) = (ϕ0(p), ..., ϕn(p)), given by the stationarity condition

ϕk(p) =
∑
j

Tj,k ϕj(p), (3)
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and
∑

k ϕk(p) = 1. (In the case of the infinite islands population structure, the results
above can be found in [50], p.413.) Note that∑

k

kϕk(p) = np, (4)

since the left-hand-side is the expected number of types A in a randomly chosen group,
there are n individuals in each group, and each individual is type A with probability p.

Some extreme cases will play important roles later in the analysis. (See Appendix C,
for an alternative explanation/derivation of the claims below.) Note first that (4) implies
that

ϕ(p) → (1, 0, ..., 0, 0), as p→ 0, (5)

ϕ(p) → (0, 0, ..., 0, 1), as p→ 1. (6)

The case m = 1 clearly has
ϕk(p) = bin(k|n, p). (7)

In the opposite extreme, when m → 0, the irreducible transition matrix Tj,k converges to
a transition matrix with traps at 0 and n, so that

ϕ(p)→ (1− p, 0, ..., 0, p), as m→ 0, (8)

where we used (4) again.
In each one of the equilibria, ϕ(p), the average relatedness R between distinct members

of a randomly chosen group takes the same value (Appendix D provides a short review of
this and the other well known claims in this paragraph). To express it in a way that does
not require Fisher-Wright intra-group reproduction (includes Gen.4), we recall that the
imbreeding effective group size, neff, is defined as the inverse of the probability that, when
a new group is created and before migration takes place, two randomly chosen members
of this group have the same mother. In the case of Fisher-Wright intragroup sampling, we
then simply have neff = n. With this definition,

R =
(1−m)2

neff − (neff − 1)(1−m)2
≈ 1

1 + 2mneff
, (9)

where the approximation is good when m is small. Here relatedness can be defined through
lineages (identity by descent – IBD), regression coefficients, or Wright’s FST statistics.

4 Weak selection

When selection is weak, i.e., 0 < δ << 1, a well known separation of time scales argument
[40, 27, 41, 31] applies in the following way. Starting with p(0) = p the population reaches
the quasi-equilibrium with distribution ϕk(p) (up to an error term of order δ) in a time of
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order 1/m, without feeling the effect of selection. But then selection produces changes in
p(t) at a rate of order δ. This is so because the fitnesses of types A and types N differ by
an amount of order δ. To implement this idea, we write ∆p(t) = p(t+ 1)− p(t) and recall
the well known formula

W̄∆p = p(WA − W̄ ) = p(1− p)(WA −WN), (10)

where WA and WN are the average fitnesses of types A and N, and W̄ = pWA+(1−p)WN is
the average fitness of all individuals (all in generation t, that is being omited in the notation,
for simplicity). To compute WA and WN , we choose at random a focal individual from the
population. We denote by I• a random variable that takes the value 1 if the focal is type
A and 0 if the focal is type N. And we denote by w• a random variable that equals the
relative fitness of the focal individual. Then WA = E(w•|I• = 1) and WN = E(w•|I• = 0).
To compute these conditional expectations, we also denote by K the random variable that
gives the total number of types A in the focal’s group. Then

Pr(K = k|I• = 1) =
Pr(I• = 1, K = k)

p
=

Pr(I• = 1|K = k)fk(t)

p
=

kfk(t)

np
. (11)

This means that if the focal is type A, it will have probability kfk(t)/np of being in a
group with exactly k types A. (The factor k, that tilts the distribution fk(t), can be easily
understood as a bias term. Given that the focal is type A, it is more like that it was chosen
from a group with many types A). An analogous computation shows that if the focal is
type N, it will have probability (n − k)fk(t)/n(1 − p) of being in a group with exactly
k types A. Therefore, WA =

∑
k kfk(t)w

A
k /np, and WN =

∑
k(n − k)fk(t)w

N
k /n(1 − p).

When fk(t) = ϕk(p), we have then WA = 1 + δV A(p) and WN = 1 + δV N(p), where

V A(p) =

∑
k kϕk(p)v

A
k

np
, (12)

V N(p) =

∑
k(n− k)ϕk(p)v

N
k

n(1− p)
. (13)

And now from (10),

∆p = δp(1− p)[V A(p)− V N(p)] + O(δ2). (14)

This equation tells us that if we accelerate time by a factor 1/δ (so that the rescalled
time is s = tδ), then p(t) will evolve as the solution x = x(s) to the differential equation
dx/ds = x(1− x)[V A(x)− V N(x)], started from x(0) = p. The equilibria are the values of
p for which

D(p) = p(1− p)[V A(p)− V N(p)] = 0. (15)

They are p = 0, p = 1 and the internal ones, where V A(p) = V N(p). Their stability is also
readily obtained, by observing the sign of D(p) close to each one of them (decreasing D(p)
⇒ stability, increasing D(p) ⇒ instability). Stability of the dynamical system can be
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equivalently thought off as stability with respect to a small perturbation in the frequency
of alleles, or with respect to a small but positive mutation rate [21] (see also SOM of [44],
Section 9).

In [44], we were concerned with the stability of the equilibrium with p = 0, i.e., we were
interested in determining when rare mutants A can invade a population of types N. This
problem was solved there (for 2lFW) with no assumption on the strength of selection. The
simplification of that general solution in the case of weak selection was then provided in
display (2) in that paper. (We review the content of that condition from [44] in Appendix
E, for use in Section 6.) That condition is therefore equivalent to the condition that
limp→0[V

A(p) − V N(p)] > 0. But from (5), we have limp→0 V
N(p) = vN0 = 0, and the

condition for invasion by rare types A becomes

lim
p→0

V A(p) =
n∑
k=1

(
lim
p→0

kϕk(p)

np

)
vAk > 0. (16)

The case in which m = 1, in which groups assort randomly in each generation, is
equivalent to the trait-group framework (see, e.g., Sec. 2.3.2 of [37]). In this case (7) and
simple manipulations with binomial coefficients transform (12), (13) and (14) into the well
known forms

V A(p) =
n∑
k=1

bin(k − 1|n− 1, p) vAk , V N(p) =
n∑
k=1

bin(k − 1|n− 1, p) vNk−1, (17)

∆p = δp(1− p)
n∑
k=1

bin(k − 1|n− 1, p) (vAk − vNk−1) + O(δ2). (18)

And the condition (16), for invasion by rare types A, becomes simply vA1 > 0. Under
the strong altruism condition vAk < vNk−1 (meaning that each type A would be better off
mutating into a type N), (18) implies the well know result [32, 23] that, when m = 1, the
only stable equilibrium is the one with no types A, and types N fixate when present. The
same is therefore also true, under this strong altruism condition, when m is close to 1.

In the opposite extreme, when m→ 0, using (8) we transform (12), (13) and (14) into

V A(p) = vAn , V N(p) = vN0 = 0, (19)

∆p = δp(1− p) vAn + O(δ2). (20)

This means that if vAn > 0, then for m close to 0, not only will rare types A invade the
population, but they will fixate. The only equilibria are then the ones with p = 0 and
p = 1, the former being unstable and the latter stable.

Consider now a model in which the following two conditions hold:

(C1) vA1 < 0, (C2) vAn > 0.
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These conditions are associated, for instance, to a social allele A, that promotes a certain
behavior that it costly to an isolated actor, but that also provides a net benefit to each
actor, when all members of the group behave in this way. In this case, from the conclusions
in the last two paragraphs, we learn that there are two critical values of the migration
parameter m, namely 0 < mf ≤ ms < 1, which play the following roles. The critical
point ms, already introduced in [44], is the threshold value for types A to be able to invade
when rare (for m > ms allele A cannot invade when rare). The critical value mf is the
threshold value for types A to fixate after invasion (for m < mf allele A not only invades
when rare, but it then fixates). (The subscripts ‘s’ and ‘f’ stand for ‘survival’ and ‘fixation’,
respectively, of the allele A.)

Because (9) establishes a one-to-one relationship between m and R, and because it is
common to measure m indirectly through R, it is natural to also introduce Rs and Rf as
the values of R that correspond to ms and mf , respectively.

In Section 6, we will see important examples for which mf < ms (Rs < Rf ), so that
there is an intermediate regime in which types A invade and evolve to a polymorphic
equilibrium. This is nevertheless not the case, as is well known [16, 40, 39], for the linear
public goods game, in which at a cost C to itself each type A contributes a benefit B
shared by the other members of its group. As we review in Appendix F, for this model
V A(p) − V N(p) = −C + BR does not depend on p, so that Rs = Rf is the solution to
Hamilton’s equation C = BR.

5 Limit of large group size and small migration rate

We turn now to the case in which n is large andm is small. It is a classical result of S. Wright
[54, 10, 50] (regarding generalization Gen.4, the conditions on Pk,i for this result to hold
are discussed in Appendix B – basically one only has to assume that individuals produce
statistically independent numbers of offpring according to their fitnesses, conditioned on
the appropriate total number of offspring in the group) that if we take the limit in which

n→∞, m→ 0, 2mneff → l,
(
so that, in particular, R→ 1

1+l

)
, (21)

then for every 0 < y < 1, ∑
k≤yn

ϕk(p)→
∫ y

0

beta(x|lp, l(1− p))dx, (22)

where beta(x|α, β) is the density of a beta distribution with parameters α and β, which up
to a normalization constant is given by xα−1(1− x)β−1. This means that when we rescale
k by dividing it by n, producing a variable x = k/n in the interval [0, 1], the distribution
of x given by ϕk(p) is close to that of a beta(x|lp, l(1 − p)). Suppose we also have the
approximations vAk ≈ ṽAk/n and vNk ≈ ṽNk/n, (uniformly in k) for some piecewise continuous

functions ṽAx and ṽNx , 0 < x < 1. Then, for large n, (12) and (13) can be replaced by

V A(p) =

∫ 1

0

beta(x|lp+ 1, l(1− p)) ṽAx dx, (23)
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V N(p) =

∫ 1

0

beta(x|lp, l(1− p) + 1) ṽNx dx. (24)

The changes in the values of the parameters α and β in the beta distributions that appear
in (23) and (24), from those of the beta distribution in (22) are due to the bias terms k/n,
or (n− k)/n, in (12) and (13), respectively. These yield factors x and (1−x), respectively,
which are incorporated into the density of the beta distribution, modifying its parameters.
Note that the factors p and 1−p in the denominators in (12) and (13) are simply normalizing
factors, and are absorbed into the normalization of the beta distributions.

The condition (16) for invasion by rare mutants A becomes in the limit (21),

lim
p→0

V A(p) =

∫ 1

0

beta(x|1, l) ṽAx dx > 0, (25)

or, equivalently, ∫ 1

0

(1− x)l−1 ṽAx dx > 0, (26)

which has already appeared implicitly in display (3) in [44], where it was derived in a
different way.

It is important to emphasize that the results in this section do not depend on the
details of the population structure, including the reproductive system. Only the scaled
population parameter mneff = l/2, that represents gene flow, or, equivalently, the average
group relatedness, R = 1/(1 + 2mneff), appears. In the case of the linear public goods
game, ṽAx = −C + Bx, and (26) is equivalent to Hamilton’s rule C < BR. As we pointed
out in [44], it is natural to consider (26) as an extension of that rule to non-linear games.
It is pleasant to observe how this combines two major ideas in evolutionary biology. The
idea from population genetics of finding scaling parameters that summarize the relevant
features of a large class of population structures. And Hamilton’s key idea, that genetic
relatedness could provide, under appropriate assumptions, the mathematical conditions for
the proliferation of a cooperative allele. While both ideas have their limitations, the results
in this section provide a case in which both are vindicated.

6 Examples

The conditions for equilibrium, stability and invasion, derived in the previous sections apply
with equal ease to any marginal fitness functions vAn , vNk . We focus in this section on two
examples that are representative of some important biological mechanisms.

In the first of these two examples (IPG), non-linearities in the marginal fitness functions
vAk and vNk , result from the iteration of a basic game and contingency of behavior in each
iteration. By assuming that the underlying base game is a linear public goods game (PG),
one can analyze the effect of non-linearity resulting only from the iterative/conditional
aspect of the life-cycle interaction among group members. This also makes the PG a
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special (extreme) case of the class of models being considered (the case when the number
of iterations is 1).

In the second example (THR) we consider a very simple type of non-linearity in the
marginal fitness functions vAk and vNk , that incorporates synergetic effects of cooperation, by
requiring a minimum number of cooperators for successeful outcomes, as well as saturation
effects, when there are many cooperators. We then also consider iterations of such a game
and observe the effect of the number of iterations.

The examples in this section illustrate some of our main concerns and conclusions.
Non-linear marginal fitness functions associated to iteration and contingencies are natural
in group structured populations, where group members live together for spans of time that
are long compared to the time frame of their vital activities. For instance, many vertebrates
live together and hunt together hundreds or thousands of times during their life-cycle. This
gives plausibility to figures like the ones in the graphs below. For reasonable values of the
parameters (group size, cost/benefit ratio for each iteration, number of iterations), we
obtain often values of Rs that are modest (below 10%) as compared to available data on
FST values [17] (Tables 6.4 and 6.5), [15] (Table 4.9) and [5] (see Appendix D for the relation
between relatedness and FST ). In contrast, the values of Rf are substantially higher. This
indicates that coexistence of cooperators and defectors should not be surprising.

The iterative nature of the games and the conditional behavior of the cooperators play
central roles in allowing for low values of Rs. One can only expect a modest value of
Rs, if the benefits of cooperation in groups with many cooperators are substantially larger
than the costs of cooperation in groups with few cooperators. This may be unlikely to
happen with a single iteration of a biologically realistic game, due to physical and biological
constraints. Also if a game is iterated, but behavior does not change from iteration to
iteration, the same negative conclusion applies, since payoffs are then simply multiplied by
the number of iterations. But once nature has endowed individuals with mechanisms that
prompt them to change behavior based on past experience, the goal becomes realistic, as
we see below.

(IPG) Iterated public goods game. Types A cooperate conditionally:

vAk =

{
−C + (k − 1)B/(n− 1), if k ≤ a,

T (−C + (k − 1)B/(n− 1)), if k > a,

vNk =

{
kB/(n− 1), if k ≤ a,
T kB/(n− 1), if k > a,

for constants 0 < C < B, T ≥ 1 and a ∈ {1, 2, ..., n − 1}. This example was first studied
independently in [20, 7], basically in the context in which m = 1. In this example a public
goods game (PG) is repeated a random number of times τ ≥ 1, with average IE(τ) = T .
Each time each member of the group can cooperate at a cost C to itself, resulting in a benefit
B/(n − 1) to each one of the other members of its group. Defectors incur no costs and
produce no benefits. We suppose that types A cooperate in the first round, and afterwards
only cooperate if at least a other members of the group cooperated in the previous round.
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This is often called a “trigger stategy” (with threshold a) and is a generalization of the
well known tit-for-tat strategy, which corresponds to the case n = 2, a = 1. In [44]
we focused on the case in which each type A cooperates in the first round, and in later
rounds cooperates if and only if its payoff in the previous round was non-negative. This
corresponds to a taking the smallest integer value that is larger than or equal to (n−1)C/B
(since the PG has vAk < 0 if and only if k < 1 + (n − 1)C/B). In this important case,
we call the strategy of types A “payoff dependent contingent cooperation”. The idea is
that after an act of cooperation, each individual who cooperated receives a feedback, that
indicates if cooperation should continue or not. If a negative value of vAk is associated with a
negative feedback, then types A will discontinue cooperation precisely according the payoff
dependent contingent cooperation rule. Types A in this example do not have to keep track
of the identity of group member who cooperated or defected, and do not have to count how
many cooperated. They only have to be predisposed to discontinue behaviors that hurt
them (in net terms), and continue behaviors that are beneficial to them (in net terms).
The conditionally cooperative behavior of types A in this example is in this sense closely
related to generalized reciprocity mechanisms [42] with low cognitive requirements. The
assumption that individuals discontinue behavior after a single unsuccessful participation
is a simplification. When this is not a realistic assumption, one can interpret the parameter
T as the ratio between the typical number of repetitions of the activity and the typical
number of unsuccessful attempts before cooperation is discontinued by a type A.

Figure 1: Payoff (marginal fitness) profiles for IPG. Payoffs vAk for types A are represented
by black squares, while red circles depict payoffs vNk for types N. In these pictures, n = 20,
C = 1, B = 5, and a = 4. From left: T = 1, T = 2 and T = 5.

(THR) Threshold model:

vAk =

{
−C, if k < θ,
−C + A, if k ≥ θ,

vNk =

{
0, if k < θ,
A′, if k ≥ θ,
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for positive constants C, A and A′, and an integer θ ∈ {1, 2, ..., n}. The idea here is simple:
the allele A carries a cost, but allows its carriers to gain benefits if sufficiently many are
in the group. Unless otherwise stated, we assume that A > C. Types N obtain benefits
also when types A do, but we allowed for the possibility that these benefits are different
from those of the types A. These payoff functions can be seen as simplifications of more
realistic ones, in which payoffs to types A initially grow slowly with k, then steeply, and
then quickly saturate. For instance, hunting of large pray may require a minimum number
of hunters, but above that threshold number there can be little benefit to adding more
hunters. Also the model of coordinated punishment of [6] provides an example of this sort.
In [2] a class of models that bridge between the PG and the THR was introduced and their
relevance discussed. Similarly to the results of [7] and [20] for the IPG, it was shown in
[2] that the THR can have polymorphic equilibria, with types A and N coexisting, when
assortment is random (m = 1 case, trait-group framework). In this case, as for the IPG,
types A can nevertheless never proliferate when p is small (the equilibrium with no types
A, p = 0, is stable). In [49], the case n = 3 of the threshold model (called there “stag hunt
game”) was discussed in connection to the conceptual issue of the role of Hamilton’s rule.

The THR behaves in a very simple way under iteration. Suppose that the game is
repeated T times over a life-cycle. And suppose that types A are “payoff dependent con-
ditional cooperatores”, meaning that a type A cooperates in the first round, and in later
rounds cooperates if and only if its payoff in the previous round was positive. The result
is that types A cooperate exactly once if k < θ, and cooperate T times if k ≥ θ. The total
payoffs to types A and to types N over the life-cycle are then those of a THR with the same
value of C, with A replaced by T (A − C) + C and A′ replaced by TA′. Fig. 2 illustrate
the case in which for the base game n = 10, θ = 4, C = 1, A = A′ = 2, so that the game
iterated T times has the parameters as indicated in the figure caption.

Figure 2: Payoff (marginal fitness) profiles for iterated THR. Payoffs vAk for types A are
represented by black squares, while red circles depict payoffs vNk for types N. In these
pictures n = 10, θ = 4, A = T + 1 and A′ = 2T . From left: T = 1, T = 3 and T = 10.

Numerical analysis. Figures: We restricted ourselves to Fisher-Wright intra-group
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reproduction in the computations. So, strictly speaking, the figures below refer to 2lFW
generalized by Gen.1, Gen.2 and Gen.3 and not Gen.4. But, as explained in Section 5 and
Appendix B, when n is large these results are also good approximations to a broad class of
intra-group reproductive systems addressed in Gen.4, provided we set n = neff, as defined
at the end of Section 3.

In the figures below, the equilibria (indicated by the frequency p of types A) where
obtained from solving (15), and their stability was obtained from the sign of D(p) in their
neighborhood (decreasing D(p) ⇒ stability, increasing D(p) ⇒ instability). Instead
of the migration rate m, or the gene flow nm, we expressed the results as functions of
the relatedness parameter R, given by (9). This allows easier comparison with FST data
[17] (Tables 6.4 and 6.5), [15] (Table 4.9) and [5] (see Appendix D for the relation between
relatedness and FST ). We computed Rs independently of the computations of the equilibria,
by the methods of [44] (see Appendix E). A similar computation was made of the point
RN
s , above which types N cannot invade a population of types N (i.e., above which the

point with p = 1 is stable). These values are indicated with dashed vertical lines (red and
magenta) on the graphs that display the equilibria as functions of R. The agreement with
the stability of the equilibria p = 0 and p = 1, obtained from (15) is clear in the pictures.
We are not aware of any general procedure for computing Rf , since it is defined in global
terms (above it, the equilibrium with p = 1 becomes the only stable equilibrium). But
typically we have Rf = max{Rs, R

N
s }, which happens in all our pictures, and allows for the

determination of Rf in these cases. Most commonly we observed Rf = RN
s , but in Fig. 8

we have an exception.
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Figure 3: IPG: n = 10, C = 1, B = 3, a = 4. (Top Left) T = 1 (in this panel
IPG = PG): Rs = Rf = 33% (ms = mf = 8.7%). (Top Right) T = 10: Rs = 14.8%
(ms = 20.3%) and Rf = 27.6% (mf = 11%). (Bottom Left) T = 100: Rs = 6.8%
(ms = 35%) and Rf = 27.2% (ms = 11.2%). Open cian circles represent unstable fixed
points, black stars represent stable fixed points. The critical relatedness for invasion by
types A, Rs, is indicated by a red dashed line while the critical relatedness for invasion
by types N, RN

s , is depicted as a magenta dashed line. The pictures show that here
Rf = RN

s . (Bottom Right) Same parameter values from bottom-left panel: profiles for
D(p) = p(1− p)[V A(p)− V N(p)] at (from bottom to top) R = 1% (blue), 5% (green),10%
(red), 15% (cian), 20% (magenta), 25% (yellow) and 30% (black).
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Figure 4: IPG: n = 18, C = 1, B = 3, a = 4. (Top Left) T = 1 (in this panel
IPG = PG): Rs = Rf = 33% (ms = mf = 5.1%). (Top Right) T = 10: Rs = 18.4%
(ms = 10.4%) and Rf = 32.2% (mf = 5.3%). (Bottom Left) T = 100: Rs = 13.5%
(ms = 14.1%) and Rf = 32.1% (ms = 5.4%). Open cian circles represent unstable fixed
points, black stars represent stable fixed points. The critical relatedness for invasion by
types A, Rs, is indicated by a red dashed line while the critical relatedness for invasion
by types N, RN

s , is depicted as a magenta dashed line. The pictures show that here
Rf = RN

s . (Bottom Right) Same parameter values from bottom-left panel: profiles for
D(p) = p(1−p)[V A(p)−V N(p)] at (from bottom to top) R = 10% (blue), 15% (green),20%
(red),25% (cian), 30% (magenta), 35% (yellow) and 40% (black).
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Figure 5: IPG: n = 50, C = 1, B = 3, a = 16. (Top Left) T = 1 (in this panel
IPG = PG): Rs = Rf = 33.3% (ms = mf = 1.95%). (Top Right) T = 10. Rs = 17%
(ms = 4.55%) and Rf = 31.4% (mf = 2.12%). (Bottom Left) T = 100: Rs = 9.76%
(ms = 8.1%) and Rf = 31.1% (mf = 2.14%). (Bottom Right) T = 1000: Rs = 6.3%
(ms = 12.3%) and Rf = 31.1% (mf = 2.14%). Open cian circles represent unstable fixed
points, black stars represent stable fixed points. The critical relatedness for invasion by
types A, Rs, is indicated by a red dashed line while the critical relatedness for invasion by
types N, RN

s , is depicted as a magenta dashed line. The pictures show that here Rf = RN
s .

This model with these parameters are the same as in Fig.2 in [44], which is restricted to the
problem of invasion by types A, but includes strong selection and comparison with the limit
of large n. In this limit, it follows from (26), as computed in the supplementary material
of [44], that for large T we have Rs = − ln(1 − C/B)/ ln(T ) approximately. Fig.2 in [44]
indicates that for T = 10, 100, 1000, this approximation is very good. As also observed in
[44], in this example, types A are strongly altruistic, in the sense that vAk < vNk−1 (each type
A would be better off mutating into a type N).
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Figure 6: THR: n = 10, θ = 4, C = 1, A = T + 1, A′ = 2T . (Top Left) T =
1 (A = 2, A′ = 2): Rs = 32.6% (ms = 9%) and Rf = 57.2% (mf = 3.5%). (Top
Right) T = 10 (A = 11, A′ = 20): Rs = 8.95% (ms = 29.6%) and Rf = 57.2%
(mf = 3.5%). (Bottom Left) T = 100 (A = 101, A′ = 200): Rs = 2.9% (ms = 52.1%)
and Rf = 57.2% (mf = 3.5%). (Bottom Right) T = 300 (A = 301, A′ = 600):
Rs = 1.73% (ms = 61.2%) and Rf = 57.2% (mf = 3.5%). Open cian circles represent
unstable fixed points, black stars represent stable fixed points. The critical relatedness for
invasion by types A, Rs, is indicated by a red dashed line while the critical relatedness for
invasion by types N, RN

s , is depicted as a magenta dashed line. The pictures show that
here Rf = RN

s .
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Figure 7: THR: n = 30, θ = 10, C = 1, A = T + 1, A′ = 2T . (Top Left) T =
1 (A = 2, A′ = 2): Rs = 33.5% (ms = 3.2%) and Rf = 61.4% (mf = 1%). (Top
Right) T = 10 (A = 11, A′ = 20): Rs = 11.5% (ms = 10.7%) and Rf = 61.4%
(mf = 1%) (Bottom Left) T = 100 (A = 101, A′ = 200): Rs = 5.5% (ms = 20.2%)
and Rf = 61.4% (mf = 1%). (Bottom Right) T = 300 (A = 301, A′ = 600):
Rs = 4.2% (ms = 24.7%) and Rf = 61.4% (mf = 1%). Open cian circles represent
unstable fixed points, black stars represent stable fixed points. The critical relatedness for
invasion by types A, Rs, is indicated by a red dashed line while the critical relatedness for
invasion by types N, RN

s , is depicted as a magenta dashed line. The pictures show that
here Rf = RN

s .
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Figure 8: THR: n = 10, θ = 8, C = 1, A = T + 1, A′ = 2T . (Top Left) T = 1 (A =
2, A′ = 2): Rs = Rf = 64.2% (ms = mf = 2.7%) and RN

s = 22.1% (mN
s = 14%).

(Top Right) T = 10 (A = 11, A′ = 20): Rs = Rf = 31% (ms = mf = 9.5%)
and RN

s = 22.1% (mN
s = 14%). (Bottom Left) T = 100 (A = 101, A′ = 200):

Rs = 16.1% (ms = 18.9%) and Rf = RN
s = 22.1% (mf = mN

s = 14%). (Bottom Right)
T = 300 (A = 301, A′ = 600): Rs = 12.3% (ms = 23.6%) and Rf = RN

s = 22.1%
(mf = mN

s = 14%). Open cian circles represent unstable fixed points, black stars represent
stable fixed points. The critical relatedness for invasion by types A, Rs, is indicated by a
red dashed line while the critical relatedness for invasion by types N, RN

s , is depicted as
a magenta dashed line. The top pictures show Rf = Rs, while the bottom pictures show
Rf = RN

s .
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7 Conclusions

For a large class of group structured populations, involving competition within groups
and possibly also among groups, and/or allowing for elasticity in group size with local
regulation, the equilibria under weak selection are obtained from equating ∆p = 0 in (14),
or equivalently, D(p) = 0 in (15) (with inputs from ((12), (13) and (3)). The stability of each
one of these equilibria is obtained from the sign of ∆p, or equivalently, the sign of D(p), close
to it. In particular rare mutant alleles A will invade when (16) holds. If groups are large
and the migration rate low, these conditions take simpler forms, provided by (23), (24) and
(25), or (26), in which only the scaled gene flow parameter mneff appears, or, equivalently,
only the relatedness parameter R = 1/(1 + 2mneff) appears. All these conditions are
easy to apply, providing tools that can address any sort of intra-group interaction and the
complexities that result from multi-individual, possibly iterated, games accross a life-cycle,
including contingencies of behavior [20, 7, 25, 3, 18, 12, 49, 2, 13, 8, 45, 36, 19, 4, 5, 6]. In this
way one can study biological models of social evolution in group-structured populations, in
which gene action is non-additive, producing marginal fitness functions under weak selection
that are non-linear functions of group composition. Our methods can therefore be used
when approaches based on differentiability of fitness functions [48, 11, 51, 12, 40, 27, 28]
are not applicable, as explained in [43].

Under the two conditions: (C1) isolated mutants have lower fitness than the wild type;
(C2) mutants that are in groups with no wild types have fitness that is larger than the
wild types, the following regimes occur, when we start from a small fraction of mutants.
(1) No invasion possible for high gene flow; (2) invasion leading to fixation for low gene
flow; and possibly also: (3) invasion leading a polymorphic equilibrium for intermediary
levels of gene flow. The three regimes are often present for iterated public goods games
with contingent cooperation, and for threshold models, as we observed in Section 6. This
contrasts to what happens with linear public goods games, for which there is no possibility
of polymorphic equilibria under weak selection, suggesting that non-linearities in fitness
functions may be present when such equilibria are observed. (Compare with [39] where
strong selection was proposed as an explanation.) Invasion of the cooperative types A can
occur in these models under modest levels of group relatedness, compatible with values
observed in several species [17] (Tables 6.4 and 6.5), [15] (Table 4.9) and [5]. This result
extends to a broad class of population structures the main conclusion in [44], showing
that population viscosity, without kin recognition, can produce levels of genetic assortment
that are sufficient for the spread of cooperative/altruistic intra-group behavior. In other
words, contrary to a widespread claim [33, 53, 16, 34, 1, 9, 24, 29, 35, 30, 52] the biological
conditions for “the good of the group to override the interest of the individual” are not
stringent. The opposite conclusion had been obtained and reinforced over the years based
on the analysis of special models, mostly variants of a linear public goods game. The
possibility of correcting that misunderstanding using the techniques from [44] and the
current paper highlights the importance of having available good methods for analyzing
non-linear marginal fitness functions.
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8 Appendix A. Variable group size

The kind of population structure that is being considered in a simplified fashion in Gen.2 can
be described as follows. There is a typical group size n0, groups with fewer members tend
to generate larger groups in the next generation (possibly because resources are abundant
for the small group), while groups with more members tend to generate smaller groups in
the next generation (possibly because resources are scarce for the large group). This can
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be modeled by fitness functions wAn,k = (1 + δvAn,k)h(n/n0) and wNn,k = (1 + δvNn,k)h(n/n0),
with a function h(s) that is decreasing and takes the value 1 at s = 1. If the typical group
size, n0, is large, the law of large numbers implies that each group that is created has size
close to its expected value. In this case we should expect group sizes that are generally
not far from n0, in relative terms. A full analysis of this framework for moderate sizes of
n0 would nevertheless involve the evolution of group sizes. For this reason, we provided a
more idealized, but also more tractable approach, in our generalization Gen.2 of 2lFW.

We present now in detail an instance of the mathematical assumptions introduced in
Gen.2, so that we can be sure that this can be done in a mathematically sound way. Our
goal is primarily to be sure of the mathematical consistency of the assumptions made in
Gen.2, not aiming now for biological realism. The reader should also keep in mind that in
the analyzis in the paper, details as those discussed next are not relevant. This robustness
of the methods presented in the paper is one of their strengths. Our example will be
mathematically as simple as possible. We suppose that each group creates in the average 1
group in the next generation and that groups always have one of the three sizes n0, n0− 1,
or n0 + 1. (The notation n0 replaces the n from the paper in this appendix, so that here
we can use n as a free variable to designate an arbitrary group size.) We will suppose that
for the possible values of n and k, the fitness functions are as presented in the previous
paragraph. Therefore w̄n,k = (1 + δv̄n0,k)h(n/n0), where v̄n,k = (kvAn,k + (n−k)vNn,k)/n. The
assumptions on the function h imply that w̄n0,k = 1 + δv̄n0,k, and for small δ > 0 we have
w̄n0−1,k > 1 and w̄n0+1,k < 1, for all k.

We want to check if the transition probabilities Pr(n′|n, k) that give the distribution of
the size n′ of an offspring group, conditioned on the size n of its parental group and the
number k of members of that group that are types A, can satisfy the conditions proposed
in Gen.2. For this we first write Pr(n0|n0, k) = 1 − αk − βk, Pr(n0 − 1|n0, k) = αk and
Pr(n0 + 1|n0, k) = βk. Then, for given fitness functions as above we must find probabilities
αk and βk, both of order δ, so that we obtain the proper average expected number of
offspring of a group of size n0 that includes k types A. This means that we must solve
n0(1− αk − βk) + (n0 − 1)αk + (n0 + 1)βk = n0(1 + δv̄n0,k). This has many solutions when
δ > 0 is sufficiently small, the simplest one being αk = −δn0v̄n0,k, βk = 0 if v̄n0,k < 0,
and βk = δn0v̄n0,k, αk = 0 if v̄n0,k ≥ 0. Biologically this means that a group of size
n0 typically creates only groups of size n0, but when the average fitness in the group is
slightly larger (smaller) than 1, then the group creates with some small positive probability
a group with one more (one less) member. Next we have to specify what Pr(n′|n0 − 1, k)
and Pr(n′|n0 + 1, k) are. We only do it for the former, since the latter is analogous. We
write Pr(n0 − 1|n0 − 1, k) = 1− γk, Pr(n0|n0 − 1, k) = γk. We have to be sure that, when
δ is small, for each value of k, we can find probabilities γk > 0 so that (n0 − 1)w̄n0−1,k =
(1−γk)(n0−1)+γkn0. This is equivalent to γk = (n0−1)(w̄n0−1,k−1). In case (and only in
case) w̄n0−1,k is slightly larger than 1 for each value of k, the corresponding γk are between 0
and 1, as we needed. This condition on w̄n0−1,k means that 1 < h((n0−1)/n0) < n0/(n0−1),
and means that groups of size n0 − 1 should be more productive than groups of size n0,
but imposes an upper bound on by how much. An analogous condition holds on the other
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side: n0/(n0 + 1) < h((n0 + 1)) < 1. (If these condition on h fail, one needs to allow more
values of n to be reached in the model.)

Having specified Pr(n′|n, k) in the previous paragraph, and assuming that intragroup
competition is modeled by Fisher-Wright sampling (i.e., we are not in the more general
setting of Gen.4), we have the complete transition matrix:
Pr(n′, k′|n, k) = Pr(n′|n, k) bin(k′|n′, kwAn,k/nw̄n,k). This provides us with a well defined
stochastic process in which each individual in each generation has an expected number of
offspring given by the proposed fitness functions wAn,k and wNn,k. (Keep in mind that migra-
tion among groups, after they are created, connects the g groups, so that the stochastic
process is a Markov chain, but only in a very large state space involving the whole popu-
lation. Under weak selection, though, we will be able to consider the migrants to a focal
group as coming from a metapopulation with fixed frequency p of types A, and in this way
effectively reduce the analysis to that of a Markov chain acting on a single focal group.)

There is a particularly nice twist to the framework under Gen.2. The fitness functions
wAn,k and wNn,k in this setting can be absolute fitnesses (expected number of offspring of
and individual), not just relative fitnesses. In 2lFW, with fixed total population of size
ng, the average absolute fitness must always be 1, but this is not the case under Gen.2.
And in the example in the previous two paragraphs, wAn,k and wNn,k are indeed absolute
fitnesses. (This is what we assumed, when we wrote equations that had to be safisfied by
the transition probabilities.) This fact can be puzzling at first sight. If wAn,k and wNn,k are
absolute fitnesses and we have, say vAn,n > 0 and types A fixated (every individual is type
A), then it would seem that everyone has an average fitness larger than 1 in a population
in equilibrium, something that cannot happen. The (incorrect) reasoning behind this idea
is that in equilibrium, with small δ > 0, almost all groups are of size n0 (correct) and that
for this size wAn0,n0

= 1 + δvAn0,n0
> 1 (correct). So we seem to conclude that the average

fitness in equilibrium must be larger than 1 by an amount of order δ. But in this reasoning
we are forgetting that even if only a fraction of order δ of groups in equilibrium have size
n0 + 1, individuals in these groups have fitness wAn0+1,n0+1 = (1 + δvAn )h((n0 + 1)/n0) < 1.
This provides a term to be added to the average fitness that is below 1 by an amount of
order δ; sufficient to explain how such an equilibrium is possible and has the necessary
average absolute fitness 1. Most groups will have size n0, and its members produce slightly
more then one offspring. But the few groups that have size n0 + 1 compensate this push
upwards, since their members produce in the average a number of offspring below 1 by a
fixed amount.

It is also very intructive to compare the situation in which types N are fixated with that
in which types A are fixated. Under the assumption that vNn,n = 0 and, as above, vAn,n > 0.
In each one of these fixated equilibria, the average absolute fitness is by necessity 1. But
the average size of the population is larger in the case A is fixated. When N is fixated
groups only have size n0 in equilibrium, while when A is fixated groups have size n0 or
n0 + 1 in equilibrium. In this case only a fraction of order δ of groups have size n0 + 1, so
that the average group size exceeds 1 only by an amout of that order, but it does exceed
it.
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9 Appendix B. General intragroup transition matrix

Here we provide some details on Gen.4. First note that if one is in the setting of Gen.2,
or Gen.3, then one would in principle have to define transition probabilities from (n, k) to
(n′, i), and that the distribution of i may depend on n in addition to k. But because we
are only concerned with weak selection in this paper, we will only need to consider the
transition matrix in case δ = 0 (small δ is treated as a perturbation), and in this case, even
under Gen.2 and Gen.3, we are restricted to groups of a fixed size n. For this reason, we
use the notation Pk,i for the δ = 0 case. Note that Pk,i is a Markov transition matrix, and
recall that we are assuming

∑
i iPk,i = k (when δ = 0, A and N are neutral markers) and

P0,0 = Pn,n = 1 (the states 0 and n are traps for the Markov chain generated by Pk,i).
Under the generalization Gen.4, (added possibly to Gen.1, Gen.2 and Gen.3) the Markov

transition matrix Tj,k, that appears in (1) and (3) takes the form

Tj,k =
∑
i,i′,i′′

Pj,i bin(i′|i,m) bin(i′′|n− i,m) bin(k − i+ i′|i′ + i′′, p). (27)

Explanation: with probability Pj,i, the new group is created with i types A and n − i
types N, of which, respectively, i′ and i′′ migrate and are replaced with migrants from
the metapopulation. The number k of types A in the group after migration is then the
sum of i − i′ (non-migrants) and a binomial random variable corresponding to i′ + i′′

attempts, each with probability p of success (migrants). (We use the standard convention
that bin(i|n, q) = 0, when i < 0 or i > n.)

All the claims in Sections 3 and 4 hold, with the same arguments given there and with
ϕ(p) being the (unique once m > 0) stationary distribution of the Markov chain with
transition matrix Tj,k given in (27). Also the statements in Appendices C, D and E hold
without changes in the argumentation.

We present now two types of examples of intragroup transition with substantially dif-
ferent biological meanings. In one important class of examples, each individual in the
parental group can be thought of as creating an independent random number of offspring
with a certain distribution (independent of n) with mean proportional to individual fitness,
conditioned on the total number of offspring created being n (or whatever the group size
is in case of Gen.2). When the individual offspring distribution is Poisson we have the
Fisher-Wright case. We will refer to these examples as the case of “distributed” production
(or transition) scheme.

In contrast, one member of the parental group can be chosen at random, with probability
proportional to individual fitness, and mother the whole new group. This example, with
high reproductive skew, will be referred to as “concentrated” production (or transition)
scheme.

The distributed and concentrated intragroup transition schemes illustrate different as-
pects of the generalized 2lFW framework. In the concentrated case, we can easily express
Pk,i and use it to compute the corresponding Tj,k and ϕk(p). This is not the case in the
distributed case, for which Pk,i is usually difficult to compute. But in contrast to the
concentrated case, the distributed case (supposing that the offspring distribution for the
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individuals has a finite second moment) satisfies the conditions for Wright’s beta approx-
imation (22) to ϕk(p) to apply. This is so because in this case, when n is large, there is
sufficient independence among the types of the members of the offspring group (conditioned
on the fraction of types A in the parental group), for the diffusion approximation used to
derive that beta distribution to be applicable. This adds significantly to the relevance of
the Fisher-Wright case and the beta approximation results in Section 5. They represent in
good approximation a broad class of intragroup transition schemes, when n is large.

10 Appendix C. Graphical construction of the equi-

libria

The equilibria ϕ(p) = (ϕ0(p), ..., ϕn(p)) can be easily computed using (3). (This is not so
easy in case of Gen.4, but can still be done using (27).) This equation can also be used
to derive the properties of ϕ(p). Here we present an alternative way of describing these
equilibria, that will appeal to readers who are fond of graphical devices, and that provides
additional intuition.

The idea is to partition the members of a group into classes of equivalence defined by
the property of being IBD. In each one of these (IBD)-classes, all the individuals will be of
type A, or all will be of type N, with respective probabilities p and 1 − p, independently
from class to class.

To obtain the (IBD)-classes, we should follow the lineages of the members back in time
and record coalescence events and migration events. Once there is a migration event in
a lineage, we can stop following this lineage. The migration even means that this lineage
reached the group in that generation. All members of the (IBD)-class of descendents from
this migrant will therefore be of the same type as this migrant. Because we are considering
equilibrium, with frequency p of types A, this type will be A or N with probability p or 1−p.
And because the population is very large and migration is random, the different migrants
to a group are type A or N independently of each other, implying that the IBD-classes are
type A or N independently of each other.

The benefit of looking at the equilibria ϕ(p) in the fashion above, is that it allows one
to see what happens in special cases, especially extreme cases, easily. When p is close to
0 (or 1), all the (IBD)-classes will be likely to have individuals who are type N (or type
A). This explains (5) and (6). When m = 1 all individuals are migrants in generation
t. Therefore each individual is in a different (IBD)-class, and clearly (7) holds. In the
opposite extreme, when m → 0, all the lineages of the members of the group are likely to
coalesce before migration, we obtain then, with overwhelming probability, a single (IBD)-
class. With probability p, this class will contain only types A, while with probability 1− p
it will contain only types N. This explains (8).
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11 Appendix D. Relatedness

Select a group at random in generation t, and from this group select in order two distinct
individuals (the focal and the co-focal). Define p̂ as the fraction of types A in that group, κ
as the fraction of types A among the n− 1 individuals in this group that are distinct from
the focal individual (this is the focal’s social environment), A1 as the event that the focal
individual is type A, A2 as the event that the co-focal individual is type A. Define Ii, i = 1, 2
as the random variable that takes value 1 when Ai happens and value 0 otherwise. Say
also that the focal and the co-focal individuals are identical by descent (IBD), if following
their lineages back in time, they coalesce before either one experiences a migration event.

Relatedness can be defined as certain regression coefficients, namely the regression of
I2 on I1 or, equivalently, that of κ on I1:

Rreg = βI2,I1 =
Cov(I1, I2)

Var(I1)
= IE(I2|A1)− IE(I2|Ac1)

= IE(κ|A1)− IE(κ|Ac1) =
Cov(I1, κ)

Var(I1)
= βκ,I1 . (28)

Here the first, the second and the last equalities are definitions, and the others are elemen-
tary probability identities. Alternatively, relatedness can be defined by

RIBD = Pr (focal and co-focal are IBD). (29)

Wright’s FST statistics can be defined by

FST =
Var(p̂)

Var(I1)
. (30)

When the sampling of the focal and co-focal is done in one of the equilibria ϕ(p), the
following well known relationships hold among the three definitions above and (9):

R = RIBD = Rreg =
nFST − 1

n− 1
. (31)

For the reader’s benefit, we present short derivations next.
The first equality in (31), is a consequence of the following equilibrium recursion. The

focal and co-focal will be IBD if and only if neither one is a migrant (probability (1−m)2)
and they either have the same mother (probability 1/neff), or they have distinct mothers

that are IBD (probability (1 − (1/neff))RIBD). Hence RIBD = (1 −m)2((1/neff) + (1 −
(1/neff))RIBD, from which we get RIBD = R, given by (9).

To derive the second equality in (31), let D be the event that focal and co-focal are IBD.
Because we are sampling from the equilibrium ϕ(p), we know that the population has been
in this equilibrium for several (>> 1/m) generations prior to the sampling. Therefore,
Pr(A1A2|D) = p and Pr(A1A2|Dc) = p2. (We use the standard convention of writing
A ∩ B simply as AB. One way to thing about these conditional probabilities is in terms
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of the (IBD)-classes defined in Appendix C. The even D means that the focal and cofocal
individuals are in the same (IBD)-class. In this case they are of the same type, while in
the opposite case, they are of independent types.) Hence Cov(I2, I1) = Pr(A1A2) − p2 =

pRIBD + p2(1 − RIBD) − p2 = p(1 − p)RIBD = Var(I1)R
IBD, which yields the second

equality in (31).
The third equality in (31), does not depend on having sampled in equilibrium, and

results from the following elementary probability identity:

Var(p̂) =
nVar(I1) + n(n− 1) Cov(I1, I2)

n2
=

Var(I1) (1 + (n− 1)Rreg)

n
, (32)

where we used (28) in the second step. Using the definition (30), this becomes FST =
(1 + (n− 1)Rreg)/n, which is equivalent to the last equality in (31).

12 Appendix E. Condition for invasion based on IBD

distribution

Display (2) in [44] implies that under weak selection, the condition for invasion by allele A
(instability of the equilibrium with p = 0) can be written as

n∑
k=1

πkv
A
k > 0, (33)

where π is the stationary distribution of the Markov chain on {1, ..., n}, with transition
matrix

Qi,j = m 1j + (1−m) bin(j − 1 |n− 1 , (1−m)i/n), (34)

with notation: 1j = 1 if j = 1 and 1j = 0 if j 6= 1. Therefore π can be computed from the
stationarity condition π = πQ and the normalization condition

∑n
k=1 πk = 1.

The distribution π has a very simple and biologically natural interpretation, that we
recall next. Two individuals are said to be IBD if following their lineages back in time,
they coalesce before a migration event affects either one. Then, as we explain in [44], πk
is the probability that if we choose at random a focal individual, it will have exactly k
individuals in its group that are IBD to it (self included). For this reason, we refer to π as
the IBD distribution.

Comparing (16) with (33), we see that since vAk is arbitrary, the term inside parentesis
in (16) must equal πk. But the computation of π as the stationary distribution of Q is
more straightforward. For this reason we used (33) to compute the values of ms and Rs in
our examples in Section 6. This is done by replacing (33) with the corresponding equality
and finding the value of m = ms that solves this equation. (Recall that Rs is then defined
by pluging in m = ms in (9)).

In the same way that one asks for conditions for the stability of the equilibrium with
p = 0, one can ask the analogous question about the equilibrium with p = 1. When can
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allele N invade a population in which there are only types A? We define mN
s (and the

corresponding RN
s ) as the least amount of migration (largest degree of relatedness) for

which this invasion can happen. Since in the derivations of (16) and (33), there is nothing
that qualitatively distinguishes types A from types N, we can use these invasion conditions,
with the appropriate quantitative modifications, to compute mN

s and RN
s . The version of

the condition for invasion of allele N based on (33) reads

n∑
k=1

πn−kv
N
k > vAn . (35)

The only subtlety is the fact that the right-hand-side in (33) is vN0 = 0, that has to be
replaced with vAn in (35). Indeed, the meaning of the left-hand-side in (33) is the average
marginal fitness of a focal type A (since it is rare, only individuals who are IBD to it in
its group are also types A). And the meaning of the right-hand-side in (33) is the average
marginal fitness of a focal type N, in the population dominated by types N and with few
invading types A. That fitness is essentially vN0 , since almost all types N then are in groups
with no types A. This makes (33) intuitive and an analogous reasoning with the roles of A
and N interchanged makes (35) equally intuitive. The value of mN

s is now obtained from
solving for equality in (35), and RN

s is then defined by pluging in m = mN
s in (9)).

13 Appendix F. Linear public goods game and relat-

edness

In the basic example of the PG, vAn = −C + B(k − 1)/(n− 1) and vNk = Bk/(n− 1), it is
well known [16] that (14) takes the simple form

∆p = δ p(1− p) (−C +BR) + O(δ2). (36)

Hamilton [16] derived (36) using the Price equation and the relationship between R and
Wright’s FST statistics. For completeness, and for the reader’s benefit, we present next two
alternative derivations of (36).

A simple way to derive (36) from (14) is to directly compute V A(p) − V N(p), using
their definitions, (12) and (13). Using also (4), we obtain, after some standard algebraic
manipulations,

V A(p)− V N(p) = −C + B
n
[∑

k(k/n)
2ϕk(p)− p2

p(1−p)

]
− 1

n− 1

= −C + B
nFST − 1

n− 1
= −C + BR, (37)

where we used (31) in the last step.
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An alternative derivation of (36) from (14) is to observe that the payoff to the focal
individual can be written as −CI1 +Bκ, and therefore

V A(p)− V N(p) = IE(−C +Bκ|A1) − IE(Bκ|A2)

= −C + B [IE(κ|A1)− IE(κ|A2)]

= −C +BRreg = −C +BR, (38)

where we used (28) and (31).
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