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Abstract

A framework for the mathematical modeling of evolution in group structured pop-
ulations is introduced. The population is divided into a fixed large number of groups
of fixed size. From generation to generation, new groups are formed that descend from
previous groups, through a two-level Fisher-Wright process, with selection between
groups and within groups and with migration between groups at rate m. When m=1,
the framework reduces to the often used trait-group framework, so that our setting
can be seen as an extension of that approach. Therefore our framework is sufficiently
flexible to allow the analysis of many previously introduced models in which altruists
and non-altruists compete, and provides new insights into these models. We focus
on the situation in which initially there is a single altruistic allele, in the population,
and no further mutations occur. The main questions are conditions for the viability
of that altruistic allele to spread, and the fashion in which it spreads when it does.
Because our results and methods are mathematically rigorous, we see them as shed-
ding light on various controversial issues in this field, including the role of Hamilton’s
rule, and of the Price equation, the relevance of linearity in fitness functions, the need
to only consider pairwise interactions, or weak selection, etc. In the current paper
we analyze the early stages of the evolution, during which the number of altruists is
small compared to the size of the population. We show that during this stage the
evolution is well described by a multitype branching process. The driving matrix
for this process can be readily obtained, reducing the problem of determining when
the altruistic gene is viable to a comparison between the leading eigenvalue (Perron-
Frobenius eigenvalue) of that matrix, and the fitness of the non-altruists before the
altruistic gene appeared. This leads to a generalization of Hamilton’s condition for
the viability of a mutant gene. That generalized viability condition can be interpreted
in an appropriate neighbor modulated fitness sense, providing a gene’s eye view of
the generalized rule. Our generalized Hamilton rule reduces to the traditional one for
public goods games, and more generally under the condition of linearity of the fitness
of each carrier of the gene A as a function of the number of copies of that gene in the
same group. Our analysis also suggests a broadly applicable criterion, that we make
explicit, for the viability of a mutant gene, in a more general setting. Our generalized
Hamilton condition simplifies considerably when selection is weak, and further when
groups are large. We analyze a significant number of examples, and observe that
the altruistic gene can spread under relatively low levels of relatedness in the groups,
corresponding to relatively high levels of migration. This happens, for instance, when
the fitness of individuals is affected by repeated activities in their groups, and the
altruistic mutant gene promotes cooperation in each round in a fashion that is condi-
tional on the behavior of the group members in previous rounds. This class of models
is a natural extension to the group structured population setting of tit-for-tat and
related conditional strategies in the iterated two player setting. We propose that this
kind of conditional altruistic behavior in groups be investigated as a possible route
for the spread of altruistic behavior through natural selection.
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1 Core results

We introduce a stylized framework for studying the evolution of a group structured popu-
lation. Our goal is to shed light and clarify issues in the ongoing debate on the interplay
between group selection and kin selection. We will focus here on the application of the
framework to the question of the spread of an altruistic gene A, resulting from a mutation,
in the absence of further mutations. This is the central issue addressed in the debate,
and is well suited for introducing our framework. Comments on other natural applications
of the framework will be made at various places in this paper. For background material,
and a significant sample of work addressing altruism, cooperation, group selection and kin
selection, from different perspectives, we refer the reader to the papers/books listed in the
reference section (except for [11] and [28]) and references therein.

We conceived our approach in the spirit of basic stylized frameworks in population ge-
netics, like the Fisher-Wright framework with selection. By this we mean that we aimed
at keeping the elements in the modeling mathematically precise, and as simple as possible,
provided they would still capture the basic biological features that one wants to study.
Central to the contribution in the present work is the fact that rigorous mathematical
methods can be used to decide the fate of the mutant gene A. This allows us to compare
our rigorous conditions for the spread of altruism with basic concepts and issues including
Hamilton’s rule, the Price equation, neighbor modulated fitness computations, the com-
patibility between a gene’s eye view and a group selection mechanism, whether pairwise
interactions, linearity of fitness functions, or weak selection have to be assumed, the pos-
sibility of altruism to spread in group structured populations when the migration rate is
significantly higher than the inverse of the group size, etc. We believe that our results help
in clarifying these issues, and others that are being debated, and we hope that it will bring
some consilience to this field, allowing for a greater level of collaboration among the various
groups contributing to the area.

Our framework can be seen as a mathematically precise version of what in [40], p.6737,
is called a “typical kin selection model”. One of our main goals was to develop methods
that apply to much more general fitness functions than those considered there, and that
do not require the assumption that selection is weak.

Our framework is also a natural extension of the classical trait-group framework (for the
origins of this framework see [82]) and therefore allows for the analysis of the models that
have previously been studied in that framework. What distinguishes our framework from
the trait-group one, is a migration rate parameter 0 ≤ m ≤ 1, with the case m = 1 reducing
to the trait-group framework. When m < 1, our framework introduces assortment, in the
sense that offsprings of members of the same group tend to stay together. The migration
parameter m determines the strength of this assortment; the smaller it is the stronger the
assortment.

Under natural conditions on the altruistic gene A, to be specified later, we show that
there are two critical values of the migration rate m, namely 0 < mf ≤ ms < 1, playing roles
as follows. For ms < m ≤ 1 the gene A is eliminated. For 0 ≤ m < mf the gene A has a
positive probability of fixating, replacing the wild allele N. In the intermediate regime, when
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mf < m < ms, the outcome is model dependent, but typically there is a positive probability
for the mutant gene A to spread and reach a polymorphic equilibrium with the wild allele
N. In this paper we will focus on the critical point ms (the subscript s stands for survival
of the mutant allele A), and the corresponding mathematically rigorous conditions for the
spread of altruism in our framework. Results on mf and the corresponding conditions
for fixation of A, as well as results on the evolution of the frequency of the gene A in
the population when it spreads (either in the intermediate polymorphic regime, or in the
fixation regime) will be presented elsewhere ([60]).

For the reader’s benefit, and for brevity, we will not present here the full rigorous
mathematical proofs, but rather explain why the various results are true at a level that,
we hope, will make them generally quite intuitive. We emphasize that the results are
mathematically rigorous and hold for any strength of selection. In the special case of weak
selection simplifications occur and will also be discussed.

We consider a population in which individuals live in a large number g of groups of
size n. Individuals are of two genetically determined phenotypic types, the wild N and the
altruistic mutant A. Reproduction is asexual and the type is inherited without mutation by
the offsprings. Each individual has a relative fitness that depends on its type and the types
of the other members of its group (the idea being that altruists, at a cost to themselves,
provide a benefit to the members of their group). The relative fitness of an altruist, and
that of a non-altruist, both in a group that has a total number k of altruists, will be written,
respectively, as

wAk = 1 + δvAk , wNk = 1 + δvNk ,

with the convention that vN0 = 0, i.e., wN0 = 1. The quantities vAk and vNk represent payoffs
to altruistic, or non-altruistic behavior. The parameter δ ≥ 0 indicates the strength of
selection, with the limit δ → 0 corresponding to the limit of weak selection, and the case
δ = 0 corresponding to the case in which there is no selection, only neutral genetic drift.
Examples of payoff functions will be provided in Section 2. See also Fig. 2.

Evolution operates as the next generation is formed through a process that involves
group competition and competition within groups, followed by migration at rate 0 ≤ m ≤ 1,
as summarized in Fig.1. Competition among groups is idealized as an (intergroup-level)
Fisher-Wright process with selection, described as follows. We associate to each group a
relative fitness given by the average relative fitness of its members. This means that a
group with k altruists has relative group fitness

w̄k =
kwAk + (n− k)wNk

n
= 1 + δv̄k, where v̄k =

kvAk + (n− k)vNk
n

. (1)

Each group in the new generation has a parental group from the previous generation, chosen
independently with probability proportional to group relative fitness. Competition among
members of a group is described by an (intragroup-level) Fisher-Wright process with selec-
tion, described as follows. The n members of each group in the new generation each has
a parent from among the n individuals in their parental group, chosen independently with
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probability proportional to the fitnesses of the members of that parental group. (A stan-
dard probability computation, using conditioning on the parental group, shows that each
individual in the old generation has then an expected number of offspring proportional to
its relative fitness. Conversely, for this to be true, the fitness associated to the groups in the
intergroup level Fisher-Wright process must be given by (1). The conceptual relevance of
this equivalence is emphasized in [36].) Once the new g groups have been formed according
to this two-level Fisher-Wright process, a fraction m of the individuals migrates from their
group to a randomly chosen group, preserving the constancy of the number n of members
of the groups. More precisely, each individual, independently of anything else, leaves its
group with probability m; the migrants then return to the g groups in a random fashion,
filling vacancies, so that each group has again n members. Each possible way of assigning
the migrants to the vacancies left in the groups is equally likely, meaning that the migra-
tion process is completely random. (Mathematically: each individual is independently of
anything else, with probability m, declared to be a migrant, and one applies then a random
permutation to the set of migrants.)

In the case m = 1, we can equivalently think that the new groups are formed by random
assortment from a metapopulation with gn individuals. Each one of these gn individuals
has a parent chosen independently with probability proportional to relative fitness from the
gn individuals in the old generation. This is precisely the traditional trait-group framework.

A model within our framework is specified by giving the values of n and the relative
fitnesses wAk and wNk . The number of groups g will be considered to be very large, corre-
sponding to taking the limit g → ∞ in the computations. The study of how finiteness of
g modifies the conclusions is very interesting, but will be deferred to a later investigation.

Our results on the viability of a single gene A to spread do not depend on any conditions
on the parameters of the model. (These results are summarized in the paragraph that
contains display (9).) But to keep the presentation more focused and interesting, we will
assume that conditions (C1) and (C2) below hold, except when stated otherwise.

(C1) vA1 < 0, i.e., wA1 < 1 = wN0 , so that an isolated type A individual has lower fitness
than the wild type N has in groups without altruists.

(C2) vAn > 0, i.e., wAn > 1 = wN0 , so that type A individuals have greater fitness when in
single-type groups than type N individuals have when in single-type groups.

Condition (C1) is sometimes referred to, after [83], as the condition for A to be called
“strongly altruistic”. This condition means that an isolated gene A is at a disadvantage
with respect to the wild type N in the population at large. In the trait-group framework,
m = 1, this condition makes it impossible for A to invade. We will see that, as expected,
this condition makes it impossible for this gene to invade also when m is close to 1, so that
ms < 1.

On the other hand, we will see that condition (C2) is sufficient for A to spread when m
is close to 0, so that ms > 0.
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We will study the evolution of the population, when started in generation 0 from the
situation in which only one individual is of type A. Naturally this refers to the situation in
which a mutation from N to A has just occurred, and to the assumption that the mutation
rate is so low that no further mutations will occur before the fate of that mutant gene has
been decided. Obviously the mutant A may disappear in a few generations, but we want
to determine here when it is viable, in the sense that it has a fair chance of spreading. We
will denote by NA(t) the number of altruists in generation t. In case δ = 0, meaning that
the mutation is neutral, the expected number of altruists remains constant, IE(NA(t)) = 1,
and a standard martingale argument gives probability 1/(ng) to the event that A will not
disappear, but rather fixate eventually. As g →∞ this probability vanishes. When δ > 0,
and condition (C1) holds, prospects are even worse for the mutant gene A in generation
1. The expected number of type A individuals then is IE(NA

1 ) = wA1 < 1. When m = 1,
these bad prospects worsen with time, since in the first few generations the possible type
A are likely to all be in different groups (since g is large), and so are always carrying the
same fitness wA1 < 1. This leads to IE(NA

t ) = (wA1 )t, and to the certain elimination of the
gene A. In the opposite extreme, when m = 0, a group with n altruists may be created
by chance in a few generations. Groups that descend from this one will always have only
type A individuals, who therefore have average fitness wAn > 1 = wN0 , by (C2). In this
situation it is reasonable to expect that the altruistic gene can spread with a probability
that does not vanish as g →∞. The rigorous analysis of what happens in this case and in
the more important case 0 < m < 1 can be done using the theory of multitype branching
processes, as covered, for instance in Chapter II of [28]. We turn next to the application
of that theory to solving our problem.

In applying multitype branching process theory here, we must emphasize that that
theory describes well the evolution in our framework only in its early stage. By early stage,
to be abbreviated E.S., we mean the generations before the number of groups that contain
altruists is comparable to g. We will nevertheless see that this early stage period is of order
log g generations, so that it covers a large number of generations since g is large.

We say that a group is of type k if it has exactly k altruists. First we explain how
multitype branching theory can be used when m = 0. In the E.S., there are few groups
with altruists, compared with the total number g of groups. Therefore in the intergroup
Fisher-Wright process the competition among groups with altruists is basically irrelevant;
groups are mostly competing with the groups without altruists, that form the background
on which groups with altruists may or not spread. To see this, note first that in each
generation there are g new groups being formed, and that they choose their parental groups
independently with probability proportional to group fitness. Since the vast majority of
the groups have no altruists, and therefore group fitness w̄0 = wN0 = 1, a type k group has a
probability close to w̄k/g of being the parent of each new group. Hence, each group of type
k, with k ≥ 1, can be seen, in first approximation, as creating independently of the other
ones a number of offspring groups that is given by a binomial distribution with parameters
g and w̄k/g (well approximated by a Poisson distribution with mean w̄k). During the E.S.,
there are much less than g groups with altruists, and they are each producing a number of
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offspring groups that is also small compared to g. For this reason each one of these groups
interferes little with the other groups with altruists in their creation of offspring groups.
This independence in the creation of offspring groups is what defines a multitype branching
process. The next fact to observe is that each group that has as its parental group a group
of type k will be of type k′, due to the intragroup Fisher-Wright process, with probability

p(k, k′) = IP (Bin(n, kwAk /nw̄k) = k′),

where Bin(n, p) is a binomial random variable with n attempts, each with probability p
of success. Assembling the pieces above, we conclude that, through the two-level Fisher-
Wright process, a group of type k creates in the average

Mk,k′ = w̄k p(k, k
′) (2)

groups of type k′ in the next generation, independently of anything else. When m = 0
this is the whole story. The matrix M , of size n × n, defined by (2), with k = 1, ..., n,
k′ = 1, ..., n, characterizes the evolution of this process

When m > 0, the creation of the new generation of groups is complicated by migration.
One could be concerned that a multitype branching process description is no longer feasible.
Fortunately this fear is unfounded, thanks to the fact that we are only considering the
E.S., during which NA(t) << g. Altruists form then a minute fraction of the migrant
population, and as a consequence it is unlikely that migrant altruists will settle in groups
that contributed altruists to the migrant population, or that any group will receive more
than one migrant altruist. A group that has k′ altruists before migration, will keep after
migration a random number of altruists given by a binomial distribution with k′ attempts
and probability 1−m of success. This means that the probability that after migration this
group is replaced by a group with k′′ altruists is given by

Ak′,k′′ = IP (Bin(k′, 1−m) = k′′). (3)

That group that had k′ altruists before migration, will also be contributing with an expected
number k′m of migrant altruists, who are likely each to settle in a different group that had
no altruists before migration, and has exactly one altruist after migration, i.e., is now of
type 1. This means that the expected number of groups of type k′′ created from groups of
type 0 that received altruists from our group that had k′ altruists before migration is given
by

Bk′,k′′ =

{
mk′, if k′′ = 1,

0, otherwise.
(4)

The matrix M should therefore be replaced, due to migration, with the matrix M(A+B)
in describing the expected number of groups of type k′′ created in the new generation by
each group of type k in the old generation. We will use the notation Nk(t) for the number
of groups of type k in generation t, and also write N(t) = (N1(t), ..., Nn(t)). In summary,
we have, in matrix notation, that for t in the E.S.,

IE (N(t+ 1) |N(t)) = N(t)M (A+B). (5)
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Obviously NA(t) = N1(t)+2N2(t)+...+nNn(t). Therefore, the survival of the altruistic
gene is equivalent to the survival of the multitype branching process N(t). Next we describe
the necessary and sufficient condition for the survival with positive probability of this
multitype branching process. In what follows we will suppose that 0 < m < 1; the cases
m = 0 and and m = 1 can be treated as limits. Because the matrix M(A+B) has then only
strictly positive entries, it results from the Perron-Frobenius Theorem (see, e.g., Theorem
5.1 in Chapter II of [28]) that it has an eigenvalue ρ that is simple, positive and larger in
absolute value than all other eigenvalues. It corresponds to left and right eigenvectors, both
of which have all their entries strictly positive. We will denote by ν this left-eigenvector,
normalized so as to represent a probability distribution over group types: ν1 + ...+ νn = 1.
(Illustrations of ρ and ν as functions of m and δ appear in Fig. 3, Fig. 5 and Fig. 8, for
various models.) A consequence of (5) and of the Perron-Frobenius Theorem is that for t
large, but still in the E.S.,

IEN(t) = Cρtν, IENA(t) = Cρt
∑
k

kνk. (6)

where C > 0 is a constant.
Theorem 7.1 in Chapter II of [28] states that the survival with positive probability of

the multitype branching process is equivalent to the condition

ρ(m) > 1. (7)

(We will make m, δ, etc, explicit in the notation ρ, ν, etc, only when important.) The
critical value ms is then obtained by solving the equation

ρ(ms) = 1. (8)

(For some numerical examples, see Fig. 3, Fig. 4, Fig. 6 and Fig. 7.) To see that this
equation has a solution in the open interval (0, 1), we use continuity of eigenvalues and
eigenvectors. In particular ρ(m) is continuous, and it is enough to observe how it behaves
as m approaches 0 or 1. When m = 0, M(A + B) = M has the eigenvalue wAn > 1 (by
(C2)), corresponding to the left-eigenvector (0, 0, ..., 0, 1). This implies that ρ(m) must be
larger than 1 when m is close to 0. When m = 1, the matrix A = 0, and M(A+B) = MB
has only the first column not identically 0. Therefore any of its left-eigenvectors must be of
the form (a, 0, ..., 0). When such a vector is multiplied by MB, the result is wA1 (a, 0, ..., 0).
This shows that wA1 is the only eigenvalue of M(A+B). Therefore ρ(m) must converge to
wA1 < 1 (by (C1)), as m→ 1.

The argument above shows that (8) has a solution. Uniqueness of this solution is not
guaranteed, unless additional conditions are assumed on the fitnesses. In any case, if there
is more than one solution to (8), the natural definition of ms, that we adopt, is as the
largest one, representing the least strength of assortment of altruists that suffices to allow
altruism to survive.

The theory of multitype branching processes provides us with further detailed infor-
mation on the patterns of evolution, when the altruistic gene A survives. Theorem 9.2 of
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Chapter II of [28] shows that in the event that the process survives, it behaves in a rather
regular fashion: as t becomes large, the vector N(t) tends to become a multiple of ν, and to
grow at rate ρ. (More precisely, the distribution of the random vector N(t)/ρt converges to
Zν, where Z is a random variable.) Intuitively, this is a sort of law of large numbers: if the
multitype branching process N(t) survives, the relative frequency of groups of each type
tends to stabilize, as that given by the vector ν, as NA(t) becomes large. But randomness
in the values of N1(t),..., Nn(t) persist (and are given by the one dimensional Z above),
due to the randomness that affects the process in the first few generations, before large
number phenomena can take place.

We summarize now what we have learned about the evolution of the gene A in our
framework. When (7) fails this gene dies out in a few generations. On the other hand,
when (7) holds, the picture of its evolution is a dichotomy. Either A is eliminated in a few
generations, or else it survives and, as it spreads, its distribution stabilizes dynamically, in
the sense that

N(t) = ρtZν, NA(t) = ρtZ
∑
k≥1

kνk, (9)

when 1 << t << log g/ log ρ. We will refer to this time period as the stationary early stage,
abbreviated S.E.S.. Note that the upper bound on the magnitude of t is equivalent to the
condition that during this period NA(t) << g. The condition t << log g/ log ρ is then
what defines the E.S., and we will refer to the first few generations, before the S.E.S., as
the very early stage, abbreviated V.E.S.. During the V.E.S., N(t) evolves very randomly,
displaying little regularity, since the number of copies of the gene A is small. The random
variable Z reflects how randomness during that period affects the later S.E.S., and the
extent to which it is not washed out as the number of copies of A grows and the evolution
becomes more regular.

Finally, the later period when NA(t) is no longer negligible as compared to g (provided
that A has survived) will be called late stage, abbreviated L.S.. The evolution of N(t)
during the L.S. will no longer be well approximated by the multitype branching process,
and is more challenging to study. To focus in the current paper only on the issue of survival
of the gene A, we will postpone our analysis of that problem to a later publication ([60]).
Here we only observe that in that regime, laws of large numbers allows us to well describe
the evolution as a dynamical system (in n dimensions, representing the fractions of groups
of each type). That dynamical system turns out to be non-linear (due to migration) and to
sometimes have more than one stable equilibrium. Nevertheless, under the condition that
(C2) holds and δ > 0 is small, or some alternative conditions (for instance (C3) in the next
section), when m > 0 is small, it has a single stable equilibrium, corresponding to fixation
of the gene A in the population. This is what characterizes the critical point mf . It is
worthwhile to stress in this connection that the linearity of the evolution during the E.S.,
as given by (5), in spite of migration, makes the issue of deciding when the mutant A can
survive much easier than it would be otherwise. This is what allows the reduction of the
problem to a standard eigenvalue problem.

Returning to our analysis of the E.S., We can see (9) as a form of self-organization
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of the gene A. If it survives, it arranges itself according to the distribution ν, that is
a left-eigenvector of the driving matrix M(A + B). Left-eigenvectors are precisely the
arrangements that the process can have which are preserved in time. To better appreciate
what is special about ν, and for several future uses, we observe that if ν ′ is a left-eigenvector
of M(A+B), with eigenvalue ρ′, and no negative entries, then

ρ′ =

∑
k w

A
k k ν

′
k∑

k k ν
′
k

. (10)

In other words, ρ′ is the average fitness of the individuals who carry the gene A (or simply,
the average fitness of the gene A), when the groups with altruists are distributed according
to ν ′. Identity (10) is an easy consequence of two observations. First that from (5) we
know that if N(t) = Cν ′ for some constant C, then IEN(t+ 1) = Cρ′ν ′. This implies that
IENA(t+ 1) = Cρ′

∑
k kν

′
k. Second, that in the multitype branching process an individual

who carries the gene A and belongs to a group with k altruists produces an expected number
of offspring wAk , so that we can also write IENA(t+1) = C

∑
k w

A
k kν

′
k. Comparison of these

expressions yields (10).
We combine (7) with (10) to write the necessary and sufficient condition for viability

of the gene A as ∑
k w

A
k k νk∑

k k νk
= ρ > 1. (11)

Since ν is the only left-eigenvector of the maximal eigenvalue ρ, (9) is telling us that
when the altruistic gene survives, it tends to organize itself (or we can also say “nature
organizes it, through natural selection”) in the stable way that maximizes its average fitness.
This observation also makes the condition of survival (11) look particularly natural. If
ρ ≤ 1, there is no stable way for the gene A to be organized so that it will have an average
fitness that is larger than that of the wild type N in the population at large, where A is
still rare; A will then not be viable. On the other hand, when ρ > 1, the gene A can be
organized according to ν, that is stable, and provides it with mean fitness larger than 1, as
needed for it to spread among the wild type N.

It is enlightening to see what happens when the inequality in (11) fails. Even in this case,
chance may produce at a time t during the V.E.S. the arrangement N(t) = (0, 0, ..., 0, 1),
meaning that there are exactly n altruists, all in the same group. Condition (C2) tells us
that at time t the average fitness of the gene A is larger than 1. And indeed, IENA(t +
1) = wAnn > n = NA(t), so that the altruistic gene is spreading at this time. But this
arrangement is not stable. In successive generations, the distribution of N(t) is driven to
a combination of left-eigenvalues of M(A + B), and NA(t) can grow then at most at rate
ρ ≤ 1, so that eventually it is eliminated.

In contrast, when (11) holds, chance will dictate if during the V.E.S. an arrangement
of copies of A will form that not only provides that gene with mean fitness larger than 1,
but is also likely to produce a succession of arrangements in the next generations, all with
this property. The important point is that, under (11), such arrangements do exist, and
drive the evolution towards ν.
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The contrast in the last two paragraphs is one of the main lessons from our analysis.
This lesson goes beyond the specific aspects of the stylization that we are adopting here.
We suggest making this idea explicit as a guiding criterion, that should be of use when
considering any framework, model or experimental situation.

Viability or Survivability Criterion: In a large population, a single mutant gene A, in the
absence of further mutations, will be viable, i.e., will have a positive probability of surviving
and spreading, if and only if this gene can produce in a few generations an arrangement of
its copies in a number that is still small compared to the size of the population, but is likely
to produce in the next generations a sequence of arrangements with a growing number of
its copies, until it accounts for a non-negligible fraction of the alleles in the population.

We will refer to such a sequence of arrangements as a survival mechanism for the mutant
gene A, so that the criterion stated above postulates the existence of a survival mechanism
as a necessary and sufficient condition for the viability of the mutant gene A. Such a
mechanism can, for instance, be started by an arrangement of copies of the gene A that
satisfied the three conditions below:

(i) When in this arrangement the average fitness of the mutant gene is larger than that
of the wild type in the population at large, before the mutant appeared.

(ii) This arrangement is likely to produce in the next generation another arrangement
with the same property (i) above.

(iii) Due to the growth in the number of copies of the gene, the probability of success in
step (ii) above increases from generation to generation, fast enough to assure that
the probability of producing the sequence of arrangements mentioned in the criterion
is large.

Indeed, in our framework, once an arrangement of copies of A is produced with distribution
in groups close to ν, conditions (i), (ii), (iii) are fulfilled, provided that ρ > 1. On the other
hand, when ρ ≤ 1, no arrangement exists that satisfies these three conditions.

We end this section with some observations on generalizations of our methods. One can
modify the intergroup and the intragroup competition procedures, from the Fisher-Wright
ones that we consider here, and in this way extend our framework further. For instance,
modifications to the intragroup selection procedure can be fairly general, and would only
require a modification of the matrix p(k, k′). Instances of such a modification could include
domination patterns in the intragroup reproduction mechanism, that result in reproductive
skew within the group. In an extreme case, a single member of the group, chosen at random
with probabilities proportional to individual fitness of the group members, could mother
all the n offspring of an offspring group.

Modifications of the intergroup competition mechanism are even simpler to consider.
Note that we did not use in our analysis the full power of the assumption that this mecha-
nism is a Fisher-Wright procedure. We only assumed that if altruists are rare, then groups
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with altruists father each in the next generation an almost independent random number of
groups, with mean proportional to group fitness (defined as average fitness of group mem-
bers). Under these broad assumptions our methods and results above, and in the remainder
of this paper, are unchanged. We chose to introduce our framework with a Fisher-Wright
competition mechanism among groups for concreteness. This choice forces the number of
offspring groups of each group to be binomially distributed (well approximated by Poisson,
since g is large). The observation in the current paragraph is of special relevance then in
situations in which the number of groups fathered by each group is better modeled by a
distribution that is far from Poisson, as for instance in cases in which their variance is much
smaller than their mean (as happens, for example, when δ is small, the mean is close to 1,
and the variance is much smaller than 1, with most groups fathering exactly one group).

2 Models

In this section we will introduce several models and discuss their relevance. Fig. 2 provides
an overview of some of their typical features. Fig. 4, Fig. 6 and Fig. 7 provide values of
ms as function of the strength of selection δ for some of them. Notice, from these figures,
that ms is not always monotone in δ, but that it often increases substantially when δ is
large. This fact highlights the relevance of studying the models not only when selection
is weak. Notice also that in Fig. 6 and Fig. 7, the product nms can be of the order of
10. This is relevant in view of the widespread claim that altruism cannot survive when
nm is significantly larger than 1. As far as we know, this perception resulted from the
analysis of particular models (e.g., in [43], [2] and [10]) and an excessive emphasis on the
public goods game (Example 1, below). One of the main messages from this section and
the following ones will, indeed, be that mechanisms that go beyond the public goods game
may be central to the understanding of the spread of altruistic genes, and can be analyzed
in our framework with no special difficulty.

Conditions (C1) and (C2) are very mild, and basically characterize the effect of the gene
A on its carriers as an individually beneficial social effect which comes with a personal cost
to them. One does not have to restrict oneself to behavioral effects of the gene A on
its carriers phenotype. For example, another kind of application could include anatomic
and physiologic effects that carry a cost, but produce benefits to those with the altered
phenotype when in groups with others that share this feature. For instance, gene A could
promote changes that facilitate verbal communication with others that have the same
changes, but at a cost, say, in adding expensive tissue to the brain. An isolated carrier of
gene A would suffer the costs of carrying it, but without the possibility of benefiting from
its potential advantages.

In order to assure mf > 0, in a forthcoming paper ([60]), we will either have to assume
that in addition to (C2) holding, δ is small, or else we will need to add an additional
assumption. A sufficient one will be:

(C3) vAn = v̄n ≥ v̄k, i.e., wAn = w̄n ≥ w̄k, for k = 0, 1, ..., n− 1, so that the average fitness
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of a group is maximized when the group contains only altruists.

When the gene A affects behavior, what precise conditions on the fitnesses wAk and wNk
should be required for this gene to be called “altruistic”? There is no agreement on the
answer. The issues are very nicely presented and discussed in [37]. We list next a few of
the conditions that can naturally be associated with altruism. These ones, and a few more
can be found in [37], where detailed references and credit are given.

Some of the conditions require the altruistic behavior to be beneficial. Typical condi-
tions of this kind are:

(C4) vAk , or equivalently, wAk , is increasing in k = 1, ..., n, so that altruists are always
better off sharing their group with more altruists.

(C5) vNk , or equivalently, wNk , is increasing in k = 0, ..., n − 1, so that non-altruists are
always better off sharing their group with more altruists.

(C6) v̄k, or equivalently, w̄k, is increasing in k = 0, ..., n, so that the members of a group
are in the average better off with more altruists in the group. (Note that (C6) is an
extension of (C3).)

And complementary conditions require the altruistic behavior to come at a cost to the
actor:

(C7) vAk < vNk , i.e., wAk < wNk , k = 1, ..., n− 1, so that altruists are always worse off than
non-altruists in the same group.

(C8) vAk+1 < vNk , i.e., wAk+1 < wNk , k = 0, ..., n − 1, so that an individual that suffered a
mutation from N to A, would be worse off.

Condition (C8) extends condition (C1). It is known that when it holds, then in the trait-
group framework, m = 1, starting from any fraction p < 1 of genes A in the population,
these genes will be eliminated. ([37] attributes this result to [45].) The assortment provided
by a low m is nevertheless sufficient to allow a single altruistic gene A to invade, if condition
(C2) holds.

We will illustrate the use of our framework with several examples (see Fig.2):

Example 1. Public goods game:

vAk = −C + (k − 1)B/(n− 1),

vNk = kB/(n− 1),

for positive constants C and B. One can think that at a cost C to itself, each altruist
provides a benefit B/(n− 1) to each one of the other members of its group. Alternatively,
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one can think that at a cost c to itself, each altruist provides a benefit b/n to each member
of its group, itself included. Set then C = c − b/n, for the net cost to the altruist, and
B = b(n− 1)/n, for the total benefit to the other members of the group. Each one of these
two descriptions is common in nature, has its theoretical advantages and both appear often
in the literature (see [55] for more on this point). The former description is often referred
to as “other-only” trait, and the latter one is then referred to as “whole-group” trait. Their
mathematical equivalence illustrates something that presents itself a number of times. Two
models may be different in relevant biologic aspects, but lead to the same functions vAk and
vNk , possibly after some change of variables, as above. In this case, we will say that the
models are materially different, but formally equivalent.

There is a second way in which the present example splits into two materially different,
but formally equivalent descriptions. On one hand, altruists could be performing individual
actions, producing identical benefits to all the other (or to all, self included) members of
the group. In some applications this may be a good description of what is happening. For
instance, altruists could be individuals with a hygiene habit that is beneficial to the group,
in preventing disease, but costly to the actor. Alarm calls are another example.

On the other hand, the fitness functions in this example can also accommodate collective
actions, in which altruists act together, to produce a common good for the group. Fighting
in a war against another group, or participating in collective hunting activities (with the
product of the hunt shared among all members of the group) would be examples of this
kind.

In all cases, the assumptions that the total benefit produced, Bk, grows linearly with
the number k of actors, and the net cost to each actor, C, is constant, may be unrealistic.
We will explore these points in Example 5, below.

Note that v̄k = k(B − C)/n. Condition (C1) holds since vA1 = −C < 0. We suppose
that C < B, so that (C2) holds, since vAn = B−C. Note that then also (C3)-(C8) all hold.

Numerical results for Example 1 appear in Fig. 4, Fig. 5 and Fig. 8.
The public goods game has rightfully been called “the mother of all cooperative models”

(see footnote 1 in [70]). It is natural to study its behavior, and to understand how the gene
A can spread in this case. In the next examples we will nevertheless try to convey the
message that one should aim at developing methods, as we do here, that can address more
general models, as well. In the spirit of that metaphor, it is natural to see the next example
as “a special daughter of the public goods game. It derives from the public goods game in
the same way that (in a two player setting) the iterated prisoner dilemma and the tit-for-tat
strategy derive from a one shot prisoner dilemma game and a simple cooperative strategy.

Example 2. Iterated public goods game. Altruists cooperate conditionally:

vAk =

{
−C + (k − 1)B/(n− 1), if k ≤ a,

T (−C + (k − 1)B/(n− 1)), if k > a,

vNk =

{
kB/(n− 1), if k ≤ a,
T kB/(n− 1), if k > a,
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for positive constants C and B, T ≥ 1 and a ∈ {1, 2, ..., n − 1}. Here we suppose that a
public goods game is repeated a random number of times τ ≥ 1, with average IE(τ) = T .
Each time each member of the group can cooperate at a cost C to itself, resulting in a benefit
B/(n − 1) to each one of the other members of its group. Defectors incur no costs and
produce no benefits. We suppose that altruists cooperate in the first round, and afterwards
only cooperate if at least a other members of the group cooperated in the previous round.
This is a generalization of the well known tit-for-tat strategy, which corresponds to the
case n = 2, a = 1. We will refer to the strategy of the altruists in this example then as
“many-individuals-tit-for-tat (with threshold a)”.

Note that when T = 1, regardless of the value of a, this example is identical to Example
1. Note also that v̄k = k(B − C)/n if k ≤ a, and v̄k = Tk(B − C)/n if k > a. Again,
we suppose that 0 < C < B, and so both, (C1) and (C2) hold, since vA1 = −C and
vAn = (B − C)T . It is also easy to see that then (C3), (C5), (C6) and (C7) hold.

Condition (C4) will only hold under additional assumptions. A very natural one, that
we will assume, unless stated otherwise, is that the threshold a satisfies

−C + aB/(n− 1) ≥ 0, (12)

i.e., when altruists keep playing the game, it is never in their disadvantage to do so.
It is instructive to look into what happens with (C8) in detail: vAk+1 − vNk = −C < 0,

if k ≤ a − 1; vAk+1 − vNk = −CT < 0 if k > a; but in the case k = a, vAa+1 − vNa =
T (−C + aB/(n − 1)) − aB/(n − 1). Therefore, if (12) holds as a strict inequality, then
vAa+1 − vNa > 0, for large T , and (C8) fails. But if (12) fails, or holds as an equality, then
(C8) holds, for arbitrary T . Note that if (12) holds as an equality (which can only occur if
(n− 1)C/B is an integer), then all the conditions (C1)-(C8) are satisfied.

This model was studied independently in [7] and in [32], in the trait-group framework.
Both papers identified stable equilibria with positive fractions of altruists (a phenomenon
that can occur only when (C8) fails). But they also observed that altruists could not invade
when rare (a phenomenon that always holds under (C1)). In [7] an approach was then
introduced to provide assortment and allow the gene A to invade when rare. The authors
concluded that such invasion by gene A could only occur under very restrictive conditions,
and that therefore this model and the corresponding notion of many-individuals-tit-for-tat
were of marginal relevance. One of our contributions in the current paper is to rectify this
perception. In our framework, we obtain values on ms large enough to indicate that this
model should be seriously considered as a possible mechanism for the spread of altruistic
genes (see Fig. 6 and Fig 15). Indeed we will see that the estimates in [7] contained
an unreasonably pessimistic assumption, that is not supported in our framework (see last
paragraph in Section 5).

From a theoretical point of view, this model is still mathematically simple enough to
lead to an interesting detailed analysis of the conditions under which the gene A can spread,
in case selection is weak and the group size n is large, with the threshold a proportional
to n. This analysis (illustrated in Fig. 16, Fig. 17, Fig. 18, Fig. 19 and Fig. 20) will be a
good illustration of the simplifications that will be obtained, in Section 5, in that regime.
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We see this example as the prototype for an important class of models, that we make
explicit in Example 6 below, and that we believe should be seriously considered and studied.

Example 3. Threshold model:

vAk =

{
−C, if k < θ,
−C + A, if k ≥ θ,

vNk =

{
0, if k < θ,
A′, if k ≥ θ,

for positive constants C, A and A′, and an integer θ ∈ {1, 2, ..., n}. The idea here is simple:
the gene A carries a cost, but allows its carriers to gain benefits if sufficiently many are
in the group. Non-altruists obtain benefits also when altruists do, but we allowed for the
possibility that those are smaller or larger than those of the altruists.

This model may be seen as a simplification of Example 2. It shares with it the features
that when few altruists are present, they incur costs, but when in numbers larger than a
threshold, have positive payoffs that may be much larger than those costs. The fitnesses in
this model are sufficiently simpler than those in Example 2, to allow for a more transparent
analysis of its behavior. We will see that this model is of great value when we discuss
conceptual issues, including Hamilton’s rule. In [70], the case n = 3 of this model (called
there “stag hunt game”) was discussed in connection to the conceptual issue of the role of
Hamilton’s rule. This raised a debate in [44] and [71] and further analysis in [20]. We will
comment on this at the end of Section 3.

Example 3 is also of great value for comparison purposes, providing meaningful bounds
on the behavior of more elaborate and realistic models. For instance, the very elaborate
fitness functions studied in [6] are well approximated by those in Example 3. We are
currently reanalyzing the work and ideas from [6] in the context of our framework, and
taking advantage of this relationship in that project ([61]).

This model can also be seen as a simple instance of another natural class of models that
we introduce below, in Example 5.

If θ = 1, then either (C1) or (C2) is violated, since then vA1 = vAn = −C + A. So we
suppose that θ ≥ 2. Under this assumption, (C1) is immediate from C > 0, and we suppose
that C < A, so that (C2) is also satisfied. Conditions (C4) and (C5) are clearly satisfied
then. Condition (C7) will be satisfied in case A−C < A′. We have v̄k = −Ck/n, if k < θ,
and v̄k = A′ + (−C + A− A′)k/n, if k ≥ θ. So (C3) (and therefore also (C6)) may not be
satisfied. (C3) holds, nevertheless, if A′ ≤ A− C. (But even under this assumption, (C6)
fails, unless θ = 2.) As for (C8), it fails, regardless of the value of A′, in the same fashion
that it failed (in general) in Example 2, since vAθ − vNθ−1 = −C + A > 0.

Numerical results for Example 3 appear in Fig. 7, Fig. 8 and Fig. 14). As with Example
2, Example 3 also nice illustrates the simplifications that will be obtained, in Section 5,
when δ is small and n is large (see (56) and (57)).
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Example 4. Additive pairwise interactions (general linear fitness functions):

vAk = aA + (k − 1)aAA + (n− k)aAN = −C + (k − 1)B/(n− 1) = d1 + d2k,
vNk = aN + kaNA + (n− k − 1)aNN = kB′/(n− 1) = d3k.

Here we suppose that members of the group interact in a pairwise manner throughout their
lives. Each such pair interaction contributes a certain amount to the total payoff of each
one of the two individuals. The contribution from each pairwise interaction to each one of
the two participants depends only on their types. The payoff to a type i interacting with a
type j will be denoted ai,j, i, j = A,N. In addition, each individual has a self contribution,
ai to its payoff that depends only on its type i = A,N. These contributions are added to
produce the final payoff. The result is displayed above, and then rewritten in terms of
C = −aA − (n − 1)aAN , B/(n − 1) = aAA − aAN , B′/(n − 1) = aNA − aNN , where we
incorporated the assumption that

aN + (n− 1)aNN = 0.

This assumption carries no loss of generality, since a constant can be added to all the payoffs
vAk and vNk without modifying the behavior of our process. (The behavior of the process is
clearly not modified by multiplying all fitnesses, wAk = 1 + δvAk , wNk = 1 + δvNk , by the same
constant. If we add a constant v to all the payoff functions vAk , vNk , the new fitnesses are
equivalent in this sense to the old fitnesses with δ replaced by δ/(1 + δv).) This condition
amounts simply to our convention that vN0 = 0. Expressing the fitness functions in terms
of C, B and B′, makes their relationship with Example 1 and Example 5 below easy to see.
Finally the result is also rewritten in an equivalent form that emphasizes the nature of the
dependence of the fitnesses on k: they are linear functions. Here d1 = −C − B/(n − 1),
d2 = B/(n− 1) and d3 = B′/(n− 1).

An important point to make is that given linear fitness functions vAk and vNk , with
vN0 = 0, as above, they can always be represented in the other two ways, with an appropriate
choice of the constants. For instance, we can take C = −d1 − d2, B/(n − 1) = d2 and
B′/(n − 1) = d3, and then take aA = aN = aNN = 0, aAA = (B − C)/(n − 1), aAN =
−C/(n− 1), aNA = B′/(n− 1).

When n = 2, the current example is the most general possible choice of the payoff
functions vAk and vNk . But this is obviously not the case when n ≥ 3. For each value of n,
the most general form of the payoff functions are polynomials of degree n− 1.

The linearity of the functions vAk and vNk will play important roles in relating our results
to other concepts, especially Hamilton’s rule. This is one of the reasons this is a major class
of models. The mathematical equivalence between these linearities and having pairwise
additive interactions should not confuse one into thinking that the linearities imply that
the fitnesses must indeed have originated from that special kind of interaction. In Example
1, the members of a group may be interacting in a collective way (hunting together, warfare,
etc). All that the mathematical equivalence says is that the fitnesses obtained there, are
the same ones of a, ficticious in this case, pairwise interaction scenario. This is a good
illustration of two formally equivalent, but materially different models.
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There are realistic stories that are conceptually associated to the public goods game,
Example 1, but lead to the more general payoff in the current example, with B′ 6= B. For
instance, the altruistic activity could be hunting more dangerous but also more nutritional
prey. If the products of the hunts are always shared by the group, we have the model in
Example 1. But if the hunters are able to consume the best part of the hunt, before sharing
the rest with the group, we would have B′ < B.

While materially different from the public goods game, Example 1, the current example
is formally equivalent to it when the following equivalent conditions hold:

B = B′, aAA − aAN = aNA − aNN , aAA − aNA = aAN − aNN . (13)

Condition (13) is know as “equal gains from switching”, since the payoffs in the 2 × 2
matrix ai,j, i, j = A, N, change by the same amounts if one switches strategies, regardless
of what the other player is doing. Unfortunately the terminology “additivity condition” or
“linearity condition” is also used in the literature for (13). This is confusing, since in our
context, additivity refers to the fact that the payoffs vAk and vNk are obtained additively
over the k− 1 pairwise interactions that each individual has with the other members of its
group. This additivity has no relationship with (13). And in our context, linearity, refers to
the linearity of vAk and vNk as functions of k. As we explained above, in the mathematically
standard way in which we are using the terms pairwise additivity and linearity, they are
equivalent to each other, and logically independent of (13).

Under condition (13), it is common to use the representation aNN = 0, aAA = −c + b,
aAN = −c, aNA = b. When b > c, this is a classical prisoner’s dilemma. It corresponds to
C = (n− 1)c, B = B′ = (n− 1)b.

The matrix ai,j represents the lifetime payoff for each pairwise interaction. This lifetime
payoff may result from the accumulation of payoffs from iterated games. In this way we
can see that the setup in this example is flexible enough to accommodate a gene A that
produces a conditional behavior over such iterated games, like, for instance a tit-for-tat
strategy. For this, suppose that each pair of individuals interact repeatedly with payoffs
given by the standard prisoner’s dilemma matrix. If type N always defects, and type A
uses a tit-for-tat strategy, we have aNN = 0, aAA = (−c+ b)T , aAN = −c, aNA = b, where
T is the average number of repetitions of the basic interaction over a lifetime. If T > 1,
(13) fails, and we have

vAk = −(n− 1)c+ ((b− c)T + c)(k − 1), vNk = bk. (14)

It is common to write B − B′ = D and call it a “synergy” term. It represents an
additional benefit (possibly negative) to altruists when interacting with other altruists.
In the iterated pairwise prisoner dilemma game with A playing tit-for-tat, (14), we have
D = (b− c)(T − 1)(n− 1).

Deciding when each one of the conditions (C1)-(C8) holds in the current example is
tedious and not so relevant. We observe only a few facts. Assuming 0 < C < Bs (C1),
(C2) and (C4), that only depend on vAk . If B′ > 0, then also (C5) holds. The other
conditions depend on how B′ relates to B and C. We just make the simple remark that if
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0 < C < B and B′ is close enough to B, then all the conditions (C1)-(C8) hold, since they
hold with slack when 0 < C < B = B′ (Example 1).

In Example 1, we observed that the assumed linearity of vAk and vNk there may not
be realistic. The same observation holds about pairwise additivity of interactions. Many
interactions in a group are between pairs, but it is not always clear that their effects on
fitness should be additive. When an individual interacts repeatedly with another member
of the group, like in the story that lead to (14), it may not be able to interact as often with
the other members of the group. Also, the beneficial effects of the pairwise interactions
may saturate, and be sub-additive, rather than additive. Additivity/linearity is mathe-
matically a natural first level simplification/approximation. But one should be aware of its
limitations. With this in mind, we turn to the next example.

Example 5. Variable costs and benefits:

vAk = −Ck + (k − 1)Bk/(n− 1),

vNk = kB′k/(n− 1),

Remarks in Example 1 and 4, above, motivate this class of of examples. Without further
assumptions on the costs and benefits functions, Ck, Bk and B′k, any model can be fit into
this form. So that what we are proposing here is first a convenient notation for comparing
models. Next we discuss some interesting assumptions on the costs and benefits functions.

It is very natural, in various applications, to assume that Ck is non-increasing and Bk

and B′k are non-decreasing. If the gene A prompts its carriers to act in some collective
way, it is often the case that the cost to each participant decreases with the number of
participants, while the total benefits produced grow faster than linearly with the number
of participants. This is called an increasing return to scale. Reasonable assumptions can be
that Ck decrease as a power of k, Ck = C/ka1 , for some constant a1 > 0, while Bk = a2k

a3

and B′k = a4k
a5 , with a2 > 0, 0 < a3 < 1, a4 > 0, 0 < a5 < 1.

Another distinct assumption on the benefit functions is that (k − 1)Bk/(n − 1) and
kB′k/(n − 1) first grow slowly with k, then steeply (close to a threshold value of k) and
then more slowly again, as the gains from scale saturate. For instance this will happen if
Bk = bk/(1 + dk2), B′k = b′k/(1 + d′k2), with positive constants b, d, b′, d′.

An interesting class of models covered by the current example is the object of [29].
Experimental results with microbes often indicate the need to consider non-linear payoff
functions, as those discussed in the current example; see, for instance [8] and [63].

In case of a collective action that requires a minimum number θ of participants, we
should have Bk = B′k = 0, for k < θ. And for larger values of k, Bk and B′k should
grow, but again typically not linearly. For instance, gene A could promote a behavior that
can only be implemented in groups of at least 4 individuals, say. This could be a type
of large game hunt, that requires 4 hunters. Gene A causes changes to the individual’s
phenotype that make this kind of hunt possible, but at the expense of adding expensive
muscular and/or brain tissue. Types N just hunt individually small game. We suppose
that the hunters share their product with the group, and that large game produces greater

19



benefits per person in the group, than small game hunt. How will Bk and B′k grow when
k ≥ 4? The answer will depend on ecological conditions, and detailed aspects of the
hunting technique. Can several different groups hunt simultaneously? Would the hunt be
more efficient with 7 hunters than with 4? If most group members are hunting large game,
would the productivity of small game hunt increase so as to make it advantageous for the
group to combine both types of hunt? And so on.

Example 6. Iterated game. Altruists cooperate conditionally, based on feedback:

vAk = Tk (−Ck + (k − 1)Bk/(n− 1)),

vNk = Tk kB
′
k/(n− 1).

Here Tk can be seen as an average number of repetitions of a basic activity. This class of
models builds on the models in Example 5 in a fashion that generalizes the way Example 2
was built on Example 1. We are supposing that a certain activity presets itself to the group
periodically. The output each time depends on the behavior of the group members, and
gene A modifies this behavior. Carriers of gene A behave first in a way that is beneficial
to the group. And afterwards, they will or not continue acting in this way, depending on
feedback that they receive. For instance, if the activity is a type of collective hunt, they
will have feedback as they consume the product of the hunt. In Example 2, the feedback
was a count of the number of participants, and this is also a possibility, but not the only
one. In Example 2, Tk was a step function, jumping from 1 to T , at k = a+1. But it seems
also natural to consider smoother functions Tk, that increase first slowly, then steeply, and
then saturate. This could result from the fact that the feedback, from each repetition of
the activity, is subject to random noise, and only gives clear cues to the altruists, outside
of a critical window of values of k. For values of k in the critical window, altruists may
repeat the activity a few times, before deciding to stop participating.

Models represented in Example 5, with non-increasing Ck and non-decreasing Bk, have
a natural threshold value of k, where their payoff to altruists becomes positive. In Example
1, this threshold value k = a + 1, corresponds to the condition (12) that appears then in
Example 2. If the feedback that affects the willingness of altruist to continue participating
in the activities promotes a function Tk that (as in Example 2, with assumption (12)) starts
growing above that threshold, the resulting behavior becomes more adaptive than it would
be without feedback effect.

Mathematically the models in the current example can be incorporated in Example
5, by modifying the definition of Ck, Bk and B′k. But the point of the current example
is to provide justification for, and a mechanism behind, a class of models in which as k
increases, vAk switches from small negative values to much larger positive values after a
threshold value of k is crossed. These models can be approximated by and/or compared
to the simple case given in Example 3. It then becomes natural to analyze that model
with ratios A/C which can be as large as 100, or 1000. For instance, suppose the species
under consideration to be early humans, with an adult reproductive lifespan of over 20
years. If the activity in consideration is repeated with a frequency of 50 per year, and if
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with negative feedback altruists stop participating after about 10 repetitions, then we can
consider a factor of 50× 20/10 = 100 between Tk with large k and Tk with small k.

Obviously the perceived feedback cannot be the payoff in the model, which is related to
expected number of offspring in the future. But it is sufficient that the feedback be strongly
correlated with this payoff. This is not a special problem about altruism, when behavior
is mediated by feedback, natural selection will align reaction to feedback with fitness.

The combination of increasing returns to scale, with the possibility of only pursuing the
behavior when it is advantageous to the actors, due to a high level of collective participation,
may have been a powerful set of mechanisms that led to the evolution of altruistic and
cooperative social traits. This idea has, for instance, been explored in [6], where a model
of that nature was analyzed in connection with the trait of punishing, at a cost, those
that do not cooperate with the group. In that model, types A produce first a costly
signal announcing that they are willing to participate in costly punishment. But they only
implement the punishment if a sufficiently large number of group members signaled their
willingness of doing it too.

Another story that fits with increased returns to scale, modified by feedback induced
discontinuation, can be suggested for the emergence of “compassionate feelings” for group
members. A gene that promotes those emotions, would cause their carriers to help fellow
group members in need, at a cost to themselves. While there are few group members
carrying this gene, they will not be able to do much for all those that may need help,
in a large group. Feedback, in the form of frustration for not being able to help as they
want, may lead them to discontinue their helping activities, in a short while. But with
enough carriers of that gene in a group, they become able to successfully provide help to
all that need it. Under this condition they pursue this activity, throught their lives. At
the same time, under this conditions, the altruists themselves have their fitnesses increased
substantially, from living in a helping environment. This suggests that this story may be
represented by a payoff function of the type that we are introducing in the current example,
with Tk that can reasonably be taken to vary by a factor of 100 or more, as a threshold
window k is crossed.

3 Conceptual discussion

We start next on a long conceptual discussion of our results, and how they may help clarify
some controversial issues related to the emergence of altruism through natural selection.

First we consider how our results and the underlying mechanisms revealed by them
relate to “group selection”, “multi-level selection” and “kin selection”. This is not the
place, and neither do we have the expertise to discuss in detail the various nuances of the
semantics involved in these questions. But a few words are in order, and should be of value
to the readers.

The use of the expression “group selection” has changed over the years, and is still
somewhat controversial. Nevertheless it seems to us that under any reasonable use of
that expression, group selection is an important force operating in our setting. In our
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framework, individuals belong to groups, groups compete among themselves, and in this
way the fitness of individuals depends on the constitution of their groups. In our typical
examples, the fitness of each altruist is strictly smaller than the fitness of the non-altruists
in its group (Condition (C7)). It is only through the higher fitness of groups with many
altruists, that the altruistic gene A is then able to survive and spread. Individuals also
compete for reproduction with other members of their own group, so that in our setting
group selection is one of the components of a “multi-level selection” process.

Is the mechanism of kin selection present when the mutant A spreads? We understand
kin selection as a process in which copies of a gene, originating from a recent common
ancestor, interact with each other providing themselves with an average fitness large enough
for this gene to survive and spread. This is precisely what happens in our case, and
is also what we tried to capture in more detail in the viability criterion and associated
survival mechanism presented at the end of Section 1. In other cases, the assortment and
organization of the genes could be caused by kin recognition. In our case it is caused by
viscosity, that results from the group structure of the population and limited migration. In
a model in which an isolated mutant has relative fitness lower than the wild type (condition
(C1) in our case), its only hope for survival is in the creation by chance of a few of its copies,
that happen to be so arranged that they have higher average fitness than the wild type in
the population at large, and for the structure of the population to be such that this gene
can then spread by what we called survival mechanism.

In this connection, condition (11) can be seen as providing a “gene’s eye view” of
viability in our setting. As noted above, the left hand side in this condition is simply the
average fitness of the gene, when it is arranged in the best possible stable way, to assure its
spreading. It is common to refer to the average fitness of a gene A as its neighbor modulated
fitness. Under certain conditions it is known that the neighbor modulated fitness can be
computed also as an “inclusive fitness”, in which one adds the effects of a randomly selected
gene A from the population on the other genes A. At this point, we are not sure how far
this method can be extended. (See [24] for a general investigation of this question.) We
will address later in this paper the issue of the validity of the related Hamilton rule in
our setting, but we will defer the answer to the question of when the neighbor modulated
fitness of the gene A can also be computed as an inclusive fitness to a later investigation.

It is worth also clarifying that in our view multi-level selection and kin selection are
not the same concept, even if both are central to our study. We see multi-level selection
as a process in which the demographics and/or the biology (including behavior) associates
individuals to groups in such a way that the reproductive success of each individual depends
on the composition of its group. Kin selection can happen, as in our framework, in a multi-
level selection setting. But it can also happen in populations that are organized in other
ways, in which individuals are not sorted into groups. Moreover, in our framework, in the
late stage, when types A exist in numbers comparable with g, multi-level selection will
continue to be a basic driving force acting on the population. But the average fitness of
types A will no longer result only from their interaction with other types A that are close
kin. Whether one should still refer to kin selection as an important force then is an issue
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that we postpone to the paper in preparation in which we study the late stage ([60]).
In the way that we use the expressions “multi-level selection” and “kin selection” in the

discussion above, they are qualitative concepts, rather than computational or accounting
procedures. These concepts are nevertheless sometimes associated to certain computa-
tional procedures: Multi-level selection is sometimes associated to the Price equation, and
kin selection is often associated to either neighbor modulated fitness, or inclusive fitness
computations. But specially in an area in which semantic issues are a source of difficulties,
one should carefully separate concepts from computational procedures. As we explained
above, while the concept of neighbor modulated fitness fits easily into our framework, it is
currently not clear to us that the concept of inclusive fitness could fit as well. The Price
equation obviously applies in our framework, since it requires minimal conditions, and is
a natural, mathematically rigorous, tool to consider when studying group-structured pop-
ulations. We will elaborate below on what it adds to the solution of the specific problems
that we are addressing in this paper, and why we did not use it in our analysis in Section
1.

To decide on the viability of the mutant A in our framework, we see no simpler math-
ematical method (when selection is strong – we will study the important simplifications in
case of weak selection later in this paper) than computing ρ or ν. This does not mean that
alternative or complementary methods cannot add insights, intuition and relevant infor-
mation. Moreover, it is important to understand how different approaches relate to each
other, and computational parameters relate to experimentally accessible variables. With
this in mind, we turn now to a discussion of how our mathematical approach compares to
the use of the Price equation, and to the role of Hamilton’s rule in our setting.

Before proceeding we need to introduce some more notation:

N0(t) = g − (N1(t) + ...+Nn(t)), f(t) = (N0(t)/g,N1(t)/g, ..., Nn(t)/g),

p(t) =
NA(t)

gn
=
∑
k

fk(t)(k/n).

This means that f(t) is the distribution of the various types of groups, including groups of
type 0, in generation t, and p(t) is the fraction of altruists in the population then.

The Price equation provides the expected value of p(t + 1), when f(t) is given. It can
be stated in several mathematically equivalent versions. In our setting the simplest one is

IE(p(t+ 1) | f(t)) = p(t)
WA(f(t))

W (f(t))
, (15)

where

W (f) =
∑
k

w̄kfk, WA(f) =

∑
k w

A
k kfk∑

k kfk
,

are, respectively, the average fitness of the individuals in the population and the average
fitness of the altruists in the population, when the distribution of the group types is given
by f = (f0, f1, ..., fn). Equation (15) is an immediate consequence of the fact that each
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individual has an expected number of offspring proportional to its relative fitness. By
adding and subtracting terms, it can be rewritten as

W (f(t)) IE(p(t+ 1) − p(t)|f(t)) = p(t)(WA(f(t))−W (f(t)))
=

∑
k(w

A
k − w̄k)(k/n)fk(t) +

∑
k(w̄k −W (f(t)))(k/n)fk(t)

= IE((wAK − w̄K)(K/n)) + Cov(w̄K , K/n),
(16)

where K is a random variable with IP (K = k) = fk(t). In the E.S., since the fraction of
altruists is negligible in the large population, we have in good approximation W (f(t)) = 1,
reducing (15) to

IE(p(t+ 1) | f(t)) = p(t)WA(f(t)). (17)

Can (15) or the equivalent (16), or the simplified (17) be used to predict when altruism
can survive in our setting? The answer is negative. In generation t = 0 we have f(0) =
(1 − 1/g, 1/g, 0, 0, ..., 0), and the average fitness of A, which is simply the fitness of the
only A present, is WA(f(0)) = wA1 < 1, under condition (C1). Therefore (17) leads to
IEp(1) = wA1 /g < 1/g = p(0) for any value of m, as we already new. If one wants to iterate
(17) over time, in order to learn under what conditions IEp(t) eventually increases and does
not vanish, one needs to be able to compute f(1), f(2), ... etc. The well known problem is
that (17) does not provide information about f(t+ 1) given f(t). Actually (17) carries no
information at all about m and how the groups are formed in generation t+ 1.

The Price equation in its various forms is a useful tool for many purposes. When the
right hand side is split, as in (16), into two terms that correspond respectively to intergroup
and intragroup competition, it carries great heuristic power, and beauty. We hope that,
nevertheless, our current study may help clarify some of its limitations in the analysis of
evolution in group structured populations. It is interesting to look into what (17) tells
us in combination with what we already know about the evolution of our population.
When the gene A survives, in the S.E.S., (9) implies that (f1(t), f2(t), ..., fn(t)) = C(t)ν,
where C(t) is time dependent and random, but one-dimensional. Therefore WA(f(t)) =
(
∑

k w
A
k kνk)/(

∑
k kνk) = ρ, thanks to (10). We obtain now from (17)

IE(p(t+ 1) | f(t)) = ρ p(t).

This is compatible with the growth rate given by (6) and (9), and is not new information
to us, but the consistency is reassuring. When ρ > 1, IE(p(t)) first decreases, but then
eventually increases, reaching growth rate ρ in the S.E.S.. As explained above, in this
case either the gene A dies out early on, or else, natural selection organizes it in groups
according to the distribution ν, that is stationary for the evolution driven by M(A+B) and
maximizes the rate of growth of p(t) among all such stationary distributions. The power of
(5) over (17), is that it provides the evolution of the whole distribution over group types,
not just the fraction of altruists in the population.

Next we address the question of whether Hamilton’s rule applies in our setting, to pro-
vide the condition under which altruism, and other genetically determined behaviors that
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are costly to the actor, can spread. The answer here greatly depends on what one means
by “Hamilton’s rule”. In its broadest sense, it is natural to use this title for any inequality
that is a necessary and sufficient condition for altruism to have a positive probability of
spreading, in other words, for any “viability condition”. With this interpretation, (11) is
a generalized Hamilton rule that is universal in our framework, when started with a single
altruist. In this paper we will use the terminology “generalized Hamilton rule”, or “gener-
alized Hamilton condition”, and “viability condition” with equivalent meanings (some may
prefer “survivability condition”). We hope that rather than creating confusion, this usage
will shift the discussion from a semantic matter into questions with scientific content: How
does the viability condition (11) simplify in special cases? Can it be formulated in terms of
concepts of relatedness, costs and benefits? Can it be formulated in terms of experimentally
meaningful variables? Can it be written in ways that help compare different models?

We should clarify that here we are considering the question of when the altruistic gene
A is viable, starting from a single copy of it. Conditions for selection to favor gene A when
the process is started with a number of copies of A comparable to g are a different problem,
that we will address when studying the evolution in our framework in the late stages ([60]).
Here we will only address this further question in the special important case of pairwise
additive interactions, Example 4, so as to illustrate how things can change when the gene
A becomes common in the population.

Before we can analyze how (11) compares in spirit and content with more traditional
forms of Hamilton’s rule, we need to introduce and review several additional concepts.

Suppose that in generation t, a group is chosen at random, and its members are ordered
in a random fashion. The chosen group is called the focal group, the first individual in the
ordering is called the focal individual and the second individual in the ordering is called
the co-focal individual. Note that this random experiment is equivalent to choosing a focal
individual at random and then choosing a co-focal individual at random from the other
n − 1 individuals in the focal’s group. We will denote by IPt probabilities that refer to
the sampling just described, and use IEt for corresponding expected values. We denote by
Aj the event that the jth individual in the random ordering of the members of the focal
group is a type A. And we denote by Ij the indicator of the event Aj, i.e., Ij is the random
variable that takes value 1 if Aj occurs and value 0 if its complement, Acj, occurs. We
denote by K = I1 + ...+ In the random number of types A in the focal group. And we set
p̂ = K/n, for the random fraction of altruists in the focal group.

Clearly IPt(Aj) = p(t) does not depend on j and is the fraction of altruists in generation
t. Linearity of expectations yields the following relationships, that will be of great use:

IEt(K) = IEt(I1) + ...+ IEt(In) = nIPt(A1) = np(t), IEt(p̂) = p(t). (18)

IEt(K − 1|A1) = IEt(I2|A1) + ...+ IEt(In|A1) = (n− 1)IPt(A2|A1). (19)

IEt(K|Ac1) = IEt(I2|Ac1) + ...+ IEt(In|Ac1) = (n− 1)IPt(A2|Ac1). (20)
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For t in the S.E.S., we have the following fundamental relationship

IPt(K = k|A1) =
kνk∑
k′ k
′νk′

= IPA
ses(K = k), (21)

for k ≥ 1, where the second equality introduces a new notation. To see this, first note that
conditioning on A1 implies that the gene A has survived into the S.E.S., and therefore (9)
holds. The sampling, at time t, is therefore of a population that has mostly groups with
no altruists, but has also a large number (of order ρt) of groups with altruists, distributed
according to ν. If the conditioning was on K ≥ 1, rather than on A1, the conditional
probability would be IPt(K = k|K ≥ 1) = νk. We would be just sampling unbiasedly from
the groups with altruists. But conditioning on A1 introduces size bias: For k ≥ 1,

IPt(K = k|A1) =
IPt(A1|K = k) IPt(K = k)∑
k′ IPt(A1|K = k′) IPt(K = k′)

=
(k/n) νk IPt(K ≥ 1)∑
k′ (k′/n) νk′ IPt(K ≥ 1)

=
kνk∑
k′ k
′νk′

.

Using (21), we can now rewrite our viability, or generalized Hamilton rule, (11) as∑
k w

A
k kνk∑

k kνk
=
∑
k

wAk IP
A
ses(K = k) = IEA

ses(wAK) = ρ > 1,

which for arbitrary strength of selection δ > 0, is equivalent to∑
k v

A
k kνk∑

k kνk
=
∑
k

vAk IP
A
ses(K = k) = IEA

ses(vAK) > 0. (22)

Conditioning on A1 means that the focal individual is a randomly chosen altruist from
the population. Inequality (22) states that the expected payoff to this individual, from its
behavior and the behavior of the others in its group, is positive. (This expected value can
be seen as a “neighbor modulated” expectation.) This starts to look more like a traditional
Hamilton rule. But one should keep in mind that this is only valid because we assumed
the sampling to be done during the S.E.S.. Had we sampled from the initial generation,
we would have obtained IE0(v

A
K |A1) = vA1 < 0, by (C1), regardless of the value of m.

Still, with this caveat, (22) carries heuristic power, and adds more meaning to (11). For
computational purposes, though, one cannot use (22) until one has information on ν.

In order to further pursue the relationship between (22) and the expressions traditionally
known as Hamilton’s rule, we need to consider special examples. And before we can do it,
we need to introduce the relatedness into our framework.

If we define relatedness rt as the regression coefficient of I2 on I1 (or equivalently, of A2

on A1, or of Ac2 on Ac1), we have

rt =
Covt(I1, I2)

Vart(I1)
=

IPt(A1A2)− (p(t))2

p(t)(1− p(t))
=

IPt(A2|A1)− p(t)
1− p(t)

=
Covt(1− I1, 1− I2)

Vart(1− I1)
=

IPt(A
c
1A

c
2)− (1− p(t))2

p(t)(1− p(t))
=

IPt(A
c
2|Ac1)− (1− p(t))

p(t)
.
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Equivalently, rt can be defined by each one of the following four identities:

IPt(A2|A1) = rt + (1− rt)p(t), IPt(A
c
2|A1) = (1− rt)(1− p(t)),

IPt(A2|Ac1) = (1− rt)p(t), IPt(A
c
2|Ac1) = rt + (1− rt)(1− p(t)).

(23)

In particular,
rt = IPt(A2|A1)− IPt(A2|Ac1). (24)

Combining (24) with (19) and (20) yields

rt =
IE(K − 1|A1) − IE(K|Ac1)

n− 1
=

IE(K|A1) − IE(K|Ac1) − 1

n− 1
. (25)

The relatedness rt is closely associated to Wright’s FST statistics, defined as:

FST,t =
Vart(p̂)

Vart(p̂) + IEt(p̂(1− p̂))
.

(The numerator measures intergroup variability, and the second term in the denominator
measures average intragroup variability.) To see how FST,t relates to rt, we write

Vart(K) = Vart(I1 + ...+ In) = nVart(I1) + n(n− 1) Covt(I1, I2)

= np(t)(1− p(t)) + n(n− 1)p(t)(1− p(t))rt
= np(t)(1− p(t)) (1 + (n− 1)rt),

and

Vart(p̂) + IEt(p̂(1− p̂)) = IEt((p̂)
2) − (IEt(p̂))

2 + IEt(p̂) − IEt((p̂)
2)

= −(p(t))2 + p(t) = p(t)(1− p(t)).

Since p̂ = K/n, we obtain,

FST,t =
1 + (n− 1) rt

n
, or, equivalently, rt =

nFST,t − 1

n− 1
. (26)

In particular, when n is large FST,t is close to rt. A by-product of the computations above
is the identity

FST,t = IEt(p̂|A1) − IEt(p̂|Ac1),

which follows from comparing (26) with (25). This identity can also be rewritten as

FST,t =
IEt(p̂I1)

p(t)
− IEt(p̂(1− I1))

1− p(t)
=

Covt(p̂, I1)

p(t)(1− p(t))
=

IEt(p̂I1)− p(t)
1− p(t)

,

showing the FST,t is the regression coefficient of p̂ on I1.
Our framework allows for a very natural definition of “kin” and “genetical identity by

descent”, IBD for short (see Fig. 9). Say that two individuals in the same generation are
l-kin in case they share a common ancestor at most l generations in their past. (The 1-kin
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of an individual are its siblings, its 2-kin are its siblings and cousins, etc.) Because the
number of groups g is large, individuals from different groups have negligible probability
of being l-kin, unless l is comparable to g. As for individuals in the same group, migration
events in their lineages play a major role in their being or not kin. If, when we follow their
lineages back in time, we find a migration event in one of these lineages before they coalesce,
then we know that the probability that they will coalesce in a time that is much shorter
than g is negligible. With this in mind, say that two individuals in the same generation
are IBD in case following their lineages backwards in time, they coalesce before (in the
backwards sense) a migration event happens in either one. From the discussion above, we
know that being IBD is essentially the same as being l-kin for some l that may have to be
large, but is not comparable to g.

We denote by D the event that the focal and the co-focal individuals are IBD, and
define genetic relatedness for the allele A by

Rt = IPt(D|A1).

In the E.S., IPt(A1) = IPt(A2) = p(t) is negligible, and so is also IPt(A1A2D
c) (we adopt

the common convention of omitting the intersection symbol ∩). This implies that rt =
IPt(A2|A1) = IPt(A2D|A1) + IPt(A2D

c|A1) = IPt(D|A1) = Rt. Using also (19), we have
then

Rt = rt = IPt(A2|A1) =
IEt(K − 1|A1)

n− 1
, for t in the E.S..

Combining this with (21), gives that

Rt = rt =
IEA

ses(K − 1)

n− 1
= Rses, for t in the S.E.S.. (27)

We look now into how the generalized Hamilton’s rule (22) can be written in the case
in which vAk is a linear function of k. There is no loss in generality in supposing that
this linear function can be written as vAk = −C + (k − 1)B/(n − 1), with B,C constant.
We could, for instance, be considering the public goods game, Example 1, or an additive
pairwise interaction, Example 4. But note that we are not making any assumption about
vNk , so that all that we are assuming is that at a cost C to itself, each altruist provides a
benefit B/(n − 1) to each other altruist in its group. They may be providing benefits to
non-altruists or not, and if they do, the amount of that benefit is irrelevant for the current
computation. We do not need, in particular, to assume linearity of vNk in k. We are also
not yet assuming any restrictions on the values of C and B.

The linearity of vAk can be exploited by using (27) to write

IEA
ses(vAK) = −C +

B

n− 1
IEA

ses(K − 1) = −C +BRses.

This transforms (22) into the familiar expression of Hamilton’s rule:

C < BRses, (28)
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whenever vAk = −C + (k − 1)B/(n − 1). But note that even in this case, in which B and
C are constants, the relatedness Rses complicates the application of the rule. To compute
Rses theoretically, one still needs information about ν. And if analyzing data from an
experiment that is supposed to be well modeled by our framework, one would have to
sample from the S.E.S., not from the very early stage (before stationarity settles in), or
from the late stage when the number of altruists is no longer negligible as compared to
the size of the whole population, so that the group type distribution is no longer directly
related to ν. For field data, this remark may make (28) of little value. Fortunately, this
problem disappears in the case of weak selection, as we will see later.

Condition (28) refers to the viability of a single new mutant A. It is clear that if we
started from any number of copies of the gene A that were negligible as compared to g, the
same arguments would apply and lead to the same rule. But had we started in generation
0 from a distribution of groups with a non-negligible fraction of altruists, (28) would not
in general provide us with the direction of evolution. Indeed, even the equilibria between
alleles A and N, in the late stage of the evolution, will not in general turn the inequalities
in (28) into equalities, unless vN = kB/(n − 1). This point, that is emphasized in [70], is
well illustrated by considering Example 4, in which vNk = kB′/(n − 1). As is well known,
for arbitrary vAk and vNk , we can write the Price equation (15), or (16) also in the following
form, where f = f(t):

W (f) IE(p(t+ 1)− p(t)|f) = p(t) (1− p(t)) (WA(f)−WN(f)),

where

WA(f) =

∑
k w

A
k kfk∑

k kfk
= IEt(w

A
K |A1),

and

WN(f) =

∑
k w

N
k (n− k)fk∑

k(n− k)fk
= IEt(w

N
K |Ac1).

(The second inequality in each one of these last two displays is analogous to (21), cor-
responding to averages over size biased samplings of the distribution f .) In case vAk =
−C + (k − 1)B/(n− 1), and vNk = kB′/(n− 1), we can use (19) and (20), to reduce these
to

WA(f) = 1 + δ IEt(−C + (K − 1)B/(n− 1)|A1) = 1 + δ (−C +BIPt(A2|A1)),

WN(f) = 1 + δ IEt(KB
′/(n− 1)|Ac1) = 1 + δ B′IPt(A2|Ac1).

Hence,

WA(f)−WN(f) = δ (−C + BIPt(A2|A1) − B′IPt(A2|Ac1))
= δ (−C + B(IPt(A2|A1) − IPt(A2|Ac1)) + (B −B′)IPt(A2|Ac1))
= δ (−C + B rt + D (1− rt) p(t)),

where D = B−B′ is the synergy parameter, and we used (23) and (24). When 0 < p(t) < 1,
and δ > 0, the necessary and sufficient condition for IE(p(t+ 1)|f(t)) > p(t), is therefore
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C < B rt + D (1− rt) p(t). (29)

Condition (29) was derived in the case n = 2 in [71], who called it Queller’s rule, giving
credit to the work in [56]. We refer the reader to [63], for an extension of Queller’s rule
when vAk and vNk are not linear functions of k.

Consider now the threshold model in Example 3. In this case IEA
ses(vAK) = −C +

AIPA
ses(K ≥ θ), so that the generalized Hamilton rule (22) reads

C < AIPA
ses(K ≥ θ). (30)

Comparing (28) with (30) is elucidating. Both make the heuristic power of (22) appar-
ent: in both cases the cost incurred by carrying the gene A must be compensated by the
expected benefit that it brings to its carriers. We will address in more detain in the next
paragraph the fact that this expected value is in the particular distribution IPA

ses, related
to ν. For the moment we focus on the fact that while (28) is in the usual Hamilton’s
rule form, (30) is not. We do not see anything deep about this difference. The special
form of (28), involving relatedness, is a feature of the linearity of vAk , that allows one to
break the computation of an expectation into a sum of correlations between the genotype
of the focal and each one of its group companions, taken one at a time. In the case of
(30), the threshold nature of vAk , does not allow for such a decomposition in any mean-
ingful and simple way, as far as we can see. Trying to rewrite IEA

ses(vAK) in terms of the
relatedness parameter Rses in this case, does not seem a natural idea. But there isn’t
anything really that fundamental about relatedness in (22). What is important there is
the distribution of the random variable K, i.e., the values of IPA

ses(K = k), k = 1, ..., n.
For a threshold model, the particular feature of this distribution that is of relevance is
the tail probability IPA

ses(K ≥ θ). For a linear model the relevant aspect of this distri-
bution is the expectation IEA

ses(K), that is naturally expressed in terms of relatedness,
since IEA

ses(K) = IEA
ses(K − 1) + 1 = (n − 1)Rses + 1, by (27). Trying to rewrite (30) in

terms of relatedness seems as unnatural to us as trying to rewrite (28) in terms of the tail
probabilities IPA

ses(K ≥ k). In this connection, we refer the reader also to the conceptual
discussion on this model, in the case n = 3, in [70] (where it was called “stag hunt game”),
[44], [71] and [20]. Especially important is the fact that in [20] both, (29) and (30) are
written in the traditional Hamilton form c < br. This is accomplished there at the cost of
defining c and b as appropriate regression coefficients, that depend not only on parameters
in the payoff functions, but also on the distribution of genes A and N in the population
(see, for instance, (12) and (13) in that paper). Conceptually, this raises the question of
what c and b mean in Hamilton’s rule. Computationally, we have found it easier to com-
pute directly with (29), (30) and more generally with the generalized Hamilton rule (11),
or equivalently, (22), rather then with the methods from [20]. Their c and b vary in time,
as the distribution of genes A and N changes. For instance, to rewrite our (30) in their
Hamilton form c < br, one has to consider the distributions of these genes in the S.E.S..
Therefore, one has to first find ν and then use it in the computations of c and b as regression
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coefficients. But once ν is obtained, (30) is available with little additional computational
work, since IPA

ses(K ≥ θ) =
∑

k≥θ kνk/
∑

k=1,...,n kνk. For this matter, obtaining ρ directly,
as Perron-Frobenius eigenvalue of M(A + B), and using (11) is, off course, easier than
using either (30), or the methods from [20]. This raises the question whether (30) is ever of
computational value. The answer is positive, since in Section 5 we will see that (22) and,
in particular, (30) yield simple and elegant formulas, when δ is small, and n is large (see
(56), (57) and the related Fig. 14).

The viability condition (22) and its special cases (28) and (30) are heuristically mean-
ingful, but computationally and experimentally they may not be such an advance over (11).
The distribution ν is built into IPA

ses(·), and in particular into Rses and IPA
ses(K ≥ θ). Com-

putationally, finding ν is at least as demanding as finding ρ. Experimentally, one would
not expect to sample in nature from the S.E.S., but rather from the late stage, after A
has invaded and is now either fixated, or in a polymorphic equilibrium with N. (One can
conceive, though, lab experiments in which one could sample from the S.E.S..) Fortunately,
these problems disappear when selection is weak, as we will see next.

4 Weak selection and further conceptual discussion

We turn now to simplifications to our analysis in case of small δ, i.e., weak selection. In this
case it is well known (see, e.g., [59], [40]) that there is a separation of time scales. Most of
the time in most places evolution is occurring as if δ were 0, i.e., via neutral genetic drift.
Only occasionally events happen that are caused by the slight differences in fitness of the
individuals. Mathematically, what one gains is the possibility of studying the process as
a perturbation of the neutral evolution. For us, this will be encapsulated in a result that
we state next. We will include δ now as a superscript in the notation of quantities that
depend on it (e.g., M δ, νδ, IPA,δ

ses, Rδ
ses, Rδ

t , etc).
We observe that when δ > 0 is small enough, the generalized Hamilton rule (11) and

its equivalent (22) can be replaced by the requirement that∑
k v

A
k kν

0
k∑

k kν
0
k

=
∑
k

vAk IP
A,0
ses(K = k) = IEA,0

ses(vAK) > 0. (31)

Indeed, (31) is an immediate consequence of (22), due to the continuity of the Perron-
Frobenius left-eigenvector νδ of the matrix M δ(A + B) as a function of δ. As δ → 0, the
vector νδ converges to ν0, the Perron-Frobenius left-eigenvector of the matrix M0(A+B).
Importantly, M0(A+B), and hence also ν0, does not depend at all on the payoff functions.
They depends only on n and m. This is illustrated in Fig. 8, where one can see that νδ is
model dependent for large δ, but becomes model independent under weak selection.

The important simplification in (31), with respect to (22), is that νδ has been replaced
by ν0 in the left hand side of (22). In particular, (31) is not affected by the values of vNk .
This may seem surprising at first sight, but can be understood as follows. In the E.S., most
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type N individuals are in groups without altruists, so that the mean fitness of the gene N
is close to 1, not depending on the vNk . The values of the vNk do affect the distribution νδ,
because they affect the fate of the groups with altruists, and in this way affect the mean
fitness of the gene A. (This is how the vNk affect (22) and its special cases (28) and (30).)
But when δ is small, νδ is close to ν0, and its dependence on vAk and vNk is a perturbation
of order δ. This dependence produces only a second order effect (of order δ2) on ρδ.

Conceptually, one can see (31) as a separation of the effects from demographics from
those of fitness. The distribution ν0k is completely determined by the demographics, while
the payoffs vAk carry only information about the fitness function. This separation makes the
concept of neighbor modulated fitness particularly appealing in the regime of weak selection.
The viability condition (31) says that the mutant gene A is viable in case its average
(neighbor modulated) fitness is larger than that of the wild type N before A appeared,
with the weights in the average being given by the fashion in which the demographics
alone arranges the genes in the population.

For theoretical analysis, (31) is much simpler than (11), or (22). One can compute
once and for all the distributions ν0, that depend only on n and m. Then, in analyzing a
model (given by vAk and vNk ), one simply looks at the average value of vAk with respect to
the universal distribution ν0. This allows for a much greater intuition of what to expect,
when comparing models, than was possible in the case of strong selection, in which vAk and
vNk also affect the distribution νδ. For instance, if two models I and II are comparable

in the sense that vA,Ik ≤ vA,IIk , k = 1, ..., n, then we have mI
s ≤ mII

s . This allows one to
use a simple model, like the threshold model in Example 3, to obtain estimates (say, lower
bounds) on the value of ms for more interesting and realistic models, like those in Examples
2, 5 and 6.

The viability condition (31) still refers to the S.E.S., but this can be overcome by con-
sidering a different random variable instead of K. Define KD as the number of individuals
in the group to which the focal belongs, that are IBD to the focal (the focal included in
the counting). Clearly KD ≤ K, and, with overwhelming probability, KD = K in the E.S..
Observe that IP 0

t (KD = k|A1) = IP 0
t (KD = k), for all t, since conditioning on A1 does not

affect lineages, when δ = 0. But while IP 0
t (K = k|A1) depends on the fraction of altruists

in the population, and so changes with time, IP 0
t (KD = k) becomes constant for t >> 1

(or, more precisely, for t >> 1/m, so that by time t it is likely that migration events have
occurred in the focal’s lineage). We denote by π = (π1, ..., πn) this equilibrium distribution:

πk = IP 0
t (KD = k), for t >> 1.

Considering t in the S.E.S., which has both t >> 1, and KD = K, gives then

πk = IP 0
t (KD = k) = IP 0

t (KD = k|A1) = IPA,0
ses(K = k) =

kν0k∑
k′ k
′ν0k′

. (32)

And the viability condition (31) can be rewritten as∑
k

vAk πk > 0. (33)
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This is a major improvement over (11) and (22), since now no reference to the S.E.S. is
left. The distribution π only depends on the structure of the population and how genes
flow under neutral drift. Experimentally it can be accessed by sampling any neutral genetic
markers from the population in demographic equilibrium (the condition t >> 1).

The distribution π is directly associated to the relatedness R0
t , t >> 1, in the same

way that the distribution IPA,δ
ses(K = k) is associated to Rδ

ses. Recall the enumeration of
the members of the focal group, in which the first individual is the focal. Now decompose
KD − 1 = ID2 + ... + IDn , where, IDj = 1, if the jth individual in this ordering is IBD to
the focal, and IDj = 0, otherwise. This yields IE0

t (K
D − 1) = IE0

t (I
D
2 ) + ... + IE0

t (I
D
n ) =

(n− 1)IP 0
t (D), and therefore

R0
t = IP 0

t (D|A1) = IP 0
t (D) =

IE0
t (K

D)− 1

n− 1
=

∑
k kπk − 1

n− 1
= R0, (34)

for t >> 1, where the last equality introduces a new notation.
One can compute R0 relatively easily, as follows. If either the focal or the co-focal

are migrants, they are not IBD. If they are both non-migrants, they chose their parents
from the parental group of their group. With probability 1/n they chose the same parent,
and are therefore IBD. With probability 1− 1/n they chose different parents. In this last
case they are IBD exactly if their parents are IBD, and this event has probability R0.
Assembling these pieces, we obtain R0 = (1−m)2(1/n+ (1− 1/n)R0) and hence,

R0 =
(1−m)2

n− (n− 1)(1−m)2
≈ 1

1 + 2nm
, (35)

where the approximation is good when m is small. This a well known result by Wright for
the infinite islands model, for haploid individuals. It is important to clarify that even when
δ = 0, our framework is not identical to the infinite islands model. In that model there
are a large number g (to be taken to ∞ in the computations) of islands, each one with
n individuals. In generation t + 1 the n individuals in each island choose, independently,
a parent from the individuals in the same island in generation t. This is followed by
migration at rate m, that is implemented in exactly the same way as in our framework.
Differently from our framework, each island is “parent” to exactly one island in the next
generation. In our framework, when δ = 0, each group is parent to a random number, with
distribution Bin(g, 1/g), of groups. In spite of this difference, it is not simply a coincidence
that lead to the same formula (35) in both frameworks. They share the same coalescence
structure, when we ask ourselves questions related to IBD. Not only is R0 identical in these
frameworks, but so is also the distribution π. Indeed, when we follow lineages backwards in
time, until there are migration events, it does not matter if the group that we are following
from generation to generation is the same (as in the infinite islands case) or changes (as in
our case).

We will show next that
r0t = R0, (36)

when t >> 1, so that R0 can also be obtained experimentally from standard statistical re-
gression methods (for instance using (26)), applied to neutral genetic markers, by sampling
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from a single generation t, without information about past generations or any knowledge
about kinship.

To emphasize where in the proof of (36) the assumption δ = 0 will matter, we first
write, for arbitrary δ ≥ 0,

rδt = IP δ
t (A2|A1) − IP δ

t (A2|Ac1)
= IP δ

t (A2|DA1) IP
δ
t (D|A1) + IP δ

t (A2|DcA1) IP
δ
t (Dc|A1)

− IP δ
t (A2|DAc1) IP δ

t (D|Ac1) − IP δ
t (A2|DcAc1) IP

δ
t (Dc|Ac1).

Clearly IP δ
t (A2|DA1) = 1, IP δ

t (A2|DAc1) = 0. The fact that δ = 0 allows the following
simplifications:

R0
t = IP 0

t (D|A1) = P 0
t (D) = IP 0

t (D|Ac1),
so that also

IP 0
t (Dc|A1) = 1−R0

t = P 0
t (Dc|Ac1),

and
IP 0
t (A2|DcA1) = IP 0

t (A2|Dc) = IP 0
t (A2|DcAc1).

(This would generally not hold with δ > 0, since then information on the occurrence or not
of A1 biases the lineage of the co-focal, even if it does not meet that of the focal.) With
the simplifications above, we readily obtain (36).

The identity (35) shows that, as expected, R0 is a strictly decreasing function of m.
This identity can be inverted as

m = 1 −

√
nR0

(n− 1)R0 + 1
. (37)

With fixed n there is a 1-to-1 correspondence between 0 ≤ m ≤ 1 and 0 ≤ R0 ≤ 1, given
by (35) and (37). It is natural then, in the regime of weak selection, to define the critical
value of R0 as

R0
s =

(1−ms)
2

n− (n− 1)(1−ms)2
. (38)

This is the least level of relatedness that makes the gene A viable in our framework, under
weak selection. Even when selection is not weak, we can define R0

s via (38), since R0 is
a natural alternative way to identify the value of m, through (35), and can be measured
using neutral genetic markers. See Fig. 13 for the shape, on a logarithmic scale of the
function (38).

Under weak selection, when vAk = −C + (k− 1)B/(n− 1) is a linear function of k, as in
the public goods game, or additive pairwise interactions, the viability condition (28) now
reads

C < BR0. (39)
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This is a fully standard Hamilton rule, with R0 independent of B and C, being a function
only of the population structure, through n and m. The critical values are therefore

R0
s = C/B, or, equivalently, ms = 1−

√
Cn

B + C(n− 1)
≈ B − C

2Cn
, (40)

where we used (37), and the approximate result is valid when n is large.
Condition (39) is an expression in our setting of the common wisdom according to which

Hamilton’s rule in its standard form applies when selection is weak and interactions are
pairwise and additive (Example 4, in our setting). In this regard, there are several points
worth commenting.

First, (39) holds with no assumption on vNk , so that it goes beyond that common wisdom.
Second, that as explained after (28), we are only considering a viability condition for

an initial situation with a single (or for this matter, a number << g) of type A individuals.
Even in the case of weak selection, and with pairwise additive interactions (so that vAk =
−C + (k − 1)B/(n− 1), vNk = kB′/(n− 1)), when the numbers of type A and type N are
comparable to g, the condition for selection to increase the frequency of type A is given by
Queller’s rule (29), that now reads

C < BR0 + D (1−R0) p, (41)

where, as before, D = B′ −B and p is the fraction of type A in the population.
Third, the assumption of weak selection greatly simplifies relatedness, and makes it

more universal, but otherwise, also under strong selection (28) has the usual Hamilton rule
form.

Fourth, in our setting it is not the pairwise additive nature of the interaction that
matters. What matters for (28) and (39) to hold is linearity of vAk in k (and for (29) and
(41) to also hold, additional linearity of vNk in k), so that one can use (19) and (20). In
Example 4, we explained that this sort of linearity is formally equivalent to having pairwise
additive interactions, but it can also result from interactions involving many individuals at
the same time, as in Example 1.

Fifth, the meaning of C and B in (39) has to be carefully understood. This point is
well illustrated by considering the fitnesses in (14), that corresponds to the case of pairwise
interactions in iterated prisoners dilemmas, with types N always defecting and types A
playing tit-for-tat. In this case C = c(n − 1) and B = ((b − c)T + c)(n − 1), where c is
the cost to an actor each time it cooperates, b is the benefit that an actor provides to its
partner each time it cooperates, and T is the average number of iterations of each pairwise
interaction. The viability condition (39) now reads c < ((b− c)T + c)R0 and we have

R0
s =

c

(b− c)T + c
. (42)

For T = 1 we have R0
s = c/b, but R0

s decreases as T increases. Nothing here is surprising,
but these computations illustrate the fact that C and B are life-cycle costs and benefits,
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and not costs and benefits in each momentary interaction (even if those are constant, as in
the present case).

In contrast to (39), the weak selection form of the viability condition (30), for the
threshold model, Example 3, reads

C < A
∑
k≥θ

πk. (43)

The quantity
∑

k≥θ πk depends only on n and m. Thanks to (37), it can also be seen as a
function of n and R0 only. But we see no hope in expressing this functional dependence
in simple terms, that would allow us to derive a simple expression for R0

s in this example.
We will, nevertheless, obtain interesting approximations for it in Section 5. We will also
be able there to compute the exact limit of R0

s for this example, as n→∞, provided that
a = ã n for some constant 0 ≤ ã ≤ 1.

To apply the viability condition (33), we need to compute π. One solution is to find
ν0, and use (32). And ν0 can be computed as the Perron-Frobenius left-eigenvector of
M0(A+B), where

(M0)k,k′ = IP (Bin(n, k/n) = k′).

This yields, after some simplifications,(
M0(A+B)

)
k,j

=

{
IP (Bin(n, (1−m)k/n) = j) + mk, if j = 1,
IP (Bin(n, (1−m)k/n) = j), if j = 2, ..., n.

(44)

Moreover, one can use the fact that ρ0 = 1 to further simplify the computation of ν0.
One can also use, alternatively, methods from coalescence theory, to study the distribu-

tion π. But because we find these methods quite cumbersome for this purpose, we introduce
next a further alternative approach, illustrated in Fig. 10, and explained next.

Consider again the random experiment of choosing a focal individual from generation
t. Denote by Fu, u = 0, 1, ..., t, the ancestor of the focal in generation u, so that, in
particular, Ft is the focal. Denote by Gu the group to which Fu belonged. Then denote
by KD

u the number of members of Gu that where IBD to the focal’s ancestor Fu (including
Fu itself). Our basic observation is that, when δ = 0, so that there is no selection, the
sequence of random variables KD

0 , K
D
1 , ..., K

D
t forms a time-stationary Markov chain on the

set {1, ..., n}, described as follows. Given the value of KD
u−1, the value of KD

u is:

(MC1) With probability m, set to 1. [Migration event in focal’s line of descent.]

(MC2) With probability 1−m set equal to 1 + Bin(n− 1, (1−m)KD
u−1/n). [No migration

event in focal’s line of descent.]

This corresponds to a transition matrix Q (that does also not depend on t) given by:

Qi,j =

{
m + (1−m) IP (Bin(n− 1, (1−m)i/n) = 0), if j = 1,
(1−m) IP (Bin(n− 1, (1−m)i/n) = j − 1), if j = 2, ..., n.

(45)
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To understand this claim, first observe that if the ancestor of the focal in generation u, Fu
was a migrant, then, by definition of IBD, we have in Gu no one other than Fu itself IBD to
Fu, and hence KD

u = 1. This corresponds to (MC1) above. On the other hand, if Fu was
not a migrant, then the number, KD

u − 1 of other members of Gu that were IBD to Fu is
easily obtained as follows. Each one of the n− 1 other members of Gu chose independently
a parent from Gu−1. The group Gu−1 had KD

u−1 members that were IBD to Fu−1 (with
Fu−1 included). Members of Gu other than Fu became IBD to Fu if two conditions were
satisfied: they had to choose a member of Gu−1 that was IBD to Fu−1, and they had to
stay in the group Gu, rather than migrate out. (If they migrated out, their replacements
would not be IBD to Fu, by definition of IBD). Each one of these n− 1 individuals in Gu
had, therefore, independently, probability (1 −m)KD

u−1/n of being IBD to Fu. This gives
for KD

u − 1 the binomial probability in (MC2). Adding 1, for Fu itself, gives us the full
expression in (MC2).

The Markov chain KD
u , starts from KD

0 = 1, and when u >> 1 it will have reached its
stationary state π. (It is clear that the chain is irreducible and aperiodic when 0 < m < 1,
since in this case all entries of Q are strictly positive. In case m = 0, it is clear that the
chain converges to its single absorbing state n, so that π = (0, 0, ..., 0, 1). In case m = 1, it
is clear that the chain converges to its single absorbing state 1, so that π = (1, 0, 0, ..., 0).)
One can compute π using stationarity, by solving the linear system of equations

π Q = π,
∑
k

πk = 1. (46)

Identity (32), relating π and ν0, can now be alternatively derived by observing that,
from (44) and (45), we have j(M0(A+B))k,j = kQk,j.

The distribution π enjoys a nice monotonicity property, as a function of m. We recall
that a probability distribution η over {1, ..., n} is said to be stochastically larger than
another one, ζ, if

∑
k≥k0 ηk ≥

∑
k≥k0 ζk, for k0 = 1, ..., n. In this case we write η � ζ. It

is known that this relationship is equivalent to the statement that
∑

k ηkhk ≥
∑

k ζkhk,
whenever hk is increasing in k. We claim that π is stochastically monotone decreasing in
m, i.e.,

π(m) � π(m′), whenever m′ ≥ m. (47)

Therefore, under (C4), the left hand side of (33) is decreasing in m. In particular, there
can only be one value of ms that satisfies

∑
k v

A
k πk(ms) = 0. The claim (47) follows from

the double observation that η Q(m) is stochastically decreasing in m and stochastically
increasing in η. (To see this more easily, consider the description of Q in (MC1) and
(MC2) above. Note that with KD

u fixed, increasing m decreases KD
u+1, and that with m

fixed, KD
u+1 is increasing with KD

u .) We can use the monotonicity in m in this observation,
to write, whenever m′ ≥ m,

π(m) = π(m)Q(m) � π(m)Q(m′).

Now, we can use the monotonicity in η in the observation above to iterate this inequality
and obtain π(m) � π(m) (Q(m′))t, for arbitrary t. Letting t→∞, gives π(m) � π(m′).
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The Markov chain introduced above can also be used in other ways, by allowing one
to write recursions for quantities of interest. For instance, this method can be used for
computing the moments of the distribution π, Ml =

∑
k k

lπk, l = 1, 2, .... This is in
principle very useful, since an arbitrary vAn can always be approximated by a polynomial.
So, in theory, one can compute IE(vAK) in good approximation and, through (33) com-
pute ms also in good approximation. We will see in the next section, that in spite of the
expressions for the momentsMl being quite involved, they provide very powerful informa-
tion. The heuristic nature of the recursive method requires going behind the apparently
cryptic expression for Q, and instead using its description in items (MC1), (MC2), that
appears immediately before Q was introduced. We illustrate the method computing first
the mean of π, M =M1. When the Markov chain is stationary, both KD

u−1 and KD
u have

distribution π. Therefore, from (MC1) and (MC2) we obtain:

M = m + (1−m) {1 + (n− 1)(1−m)M/n} .

This yields ∑
k

kπk = M =
n

n− (n− 1)(1−m)2
. (48)

This result could also have been obtained by combining (34) and (35), or alternatively (35)
could have been obtained from (34) and (48).

To express the lth moment, Ml, in terms of Mj, j = 1, 2, ..., l − 1, we will use the
following fact. If X has a Bin(N, p) distribution, then

IE(X l) =
l∑

j=1

S(l, j)Nj p
j,

where Nj = N(N − 1) · · · (N − j + 1), and the Stirling number of the second kind, S(l, j),
is the number of ways in which a set with l elements can be partitioned into j non-empty
sets. Clearly S(l, 1) = S(l, l) = 1, for all l. They are also known to satisfy

S(l, j) =
1

j!

j∑
i=0

(
j
i

)
(j − i)l.

The first few values of S(l, j) are: S(1, 1) = 1;S(2, 1) = 1, S(2, 2) = 1;S(3, 1) = 1, S(3, 2) =
3, S(3, 3) = 1;S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6, S(4, 4) = 1;S(5, 1) = 1, S(5, 2) =
15, S(5, 3) = 25, S(5, 4) = 10, S(5, 5) = 1; ...

For our purpose, it is convenient to write s = 1−m, and use the Markov chain descrip-
tion (MC1), (MC2) as it applies to (KD

u − 1)l: With probability m this quantity takes the
value 0, and with probability s it takes the value (Bin(n− 1, sKD

u−1/n))l. Therefore

IE((KD
u − 1)l) = s

l∑
j=1

S(l, j) (n− 1)j s
jIE(KD

u−1)
j/nj.
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Since in equilibrium, KD
u−1 and KD

u both have distribution π, we obtain

l∑
j=0

(
l
j

)
(−1)l−jMj =

l∑
j=1

S(l, j)
(n− 1)j
nj

sj+1Mj.

This provides us with the aimed recursion:

Ml =

(−1)l+1 +
∑l−1

j=1

{
(−1)l−j+1

(
l
j

)
+ S(l, j)

(n−1)j
nj sj+1

}
Mj

1 − (n−1)l
nl sl+1

. (49)

To illustrate the use of (49), we insert the value of M1 = M, from (48), into the
recursion for M2:

M2 =
−1 +

{
2 + n−1

n
s2
}
M1

1 − (n−1)(n−2)
n2 s3

=
−n2 + {2n2 + n(n− 1)s2} n

n−(n−1)s2

n2 − (n− 1)(n− 2)s3

=
n2 (n+ 2(n− 1)s2)

(n2 − (n− 1)(n− 2)s3) (n− (n− 1)s2)
.

This gives for the variance of the distribution π the value:∑
k

(k − M)2 πk = M2 − (M1)
2 =

n2 (n− 1) s2 (n+ (n− 2)s− 2(n− 1)s2)

(n2 − (n− 1)(n− 2)s3) (n− (n− 1)s2)2
.

The expressions above for Ml and the variance are obviously very involved. They
simplify substantially when n is large, since (n − 1)j/n

j → 1 as n → ∞. This is not a
surprise, since n does not appear in (MC1), and in (MC2) the binomial random variable
converges in distribution to a Poisson random variable, with mean sKD

u−1. The resulting
Markov chain has state space {1, 2, ...}, but it is not hard to show that it is positive
recurrent, and so has a single stationary distribution, to which π converges as n→∞. We
will not explore this limit here, but rather study, in the next section, a limit in which as
n→∞, also m→ 0. As we will see, in this limit π simplifies considerably, and leads to a
number of very interesting applications.

5 Limit of large n and small m under weak selection

In this section we will continue to assume that selection is weak and we will study the limit
in which

n→∞, m→ 0 and nm→ m̃, so that R0 → 1/(1 + 2m̃) = R̃0, (50)

where we used (35). To state the results on the behavior of the distribution π in this limit,
we suppose that KD is a random variable with distribution π, i.e., IP (KD = k) = πk. We
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state and comment the results in (a) and (b) below, and afterwards, explain how to do the
computations. (See also Fig. 12.)

(a) If 0 ≤ m̃ <∞, then for l = 1, 2, ...,

Ml

nl
−→ l!

(2m̃+ 1)(2m̃+ 2) · · · (2m̃+ l)
= M̃l. (51)

This implies (see, e.g., Section 2.3.e of [11]) that the random variable KD/n converges in

distribution to a distribution with lth moment M̃l.
When 0 < m̃ < 1, these moments characterize a Beta distribution, with parameters

α = 1 and β = 2m̃, which has density fm̃(x) = 2m̃ (1 − x)2m̃−1, 0 < x < 1. In other
words,

IP (KD/n > x) →
∫ 1

x

fm̃(x′)dx′ = (1− x)2m̃, (52)

for arbitrary 0 ≤ x ≤ 1. Notice that, for each x, this tail probability, (1 − x)2m̃, is de-
creasing in m̃, meaning that the corresponding family of Beta distributions is stochastically
monotone decreasing in m̃.

The case m̃ = 1/2, which has R̃0 = 1/2, is particularly simple. In this case the
limiting distribution, Beta(1,1) is the uniform distribution between 0 and 1, with fm̃(x) = 1,
0 < x < 1. This case can be seen as separating two qualitatively distinct cases: When
0 < m̃ < 1/2, the density fm̃(x) is increasing in 0 < x < 1, while when 1/2 < m̃ <∞, the
density fm̃(x) is decreasing in 0 < x < 1. In the extreme cases, in which m̃ is close to 0 or
very large, the density fm̃(x) concentrates, respectively, close to 1 or 0.

When m̃ = 0, we have M̃l = 1, for each l = 1, 2, .... These are the moments of
a degenerate random variable, that takes the value 1 with probability 1. Therefore the
random variable KD/n converges in probability to 1.

(b) If m̃ =∞, we have for l = 1, 2, ...,

Ml

nl
−→ 0. (53)

These are the moments of a degenerate random variable, that takes the value 0 with
probability 1. Therefore the random variable KD/n converges in probability to 0.

But a different way of scaling KD, provides a non-degenerate limit. We have, for
l = 1, 2, ...,

mlMl −→
l!

2l
, (54)

i.e., mKD converges in distribution to a random variable with lth moment l!/2l. These
moments characterize an exponential distribution with mean 1/2. In other words,

IP (mKD > x) → exp(−2x), (55)
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for arbitrary x ≥ 0.

The claims in (51), (53) and (54), about the convergence of the scaled moments, can
be readily obtained by induction in l = 1, 2, ..., from (48) and (49), and the following two
observations. First, for j = l − 1,

(−1)l−j+1

(
l
j

)
+ S(l, j)

(n− 1)j
nj

sj+1 =

(
l

l − 1

)
+

(
l
2

)
(n− 1)l−1
nl−1

sl

−→ l +
l (l − 1)

2
=

l (l + 1)

2
.

Second, the denominator in (49) can be rewritten as

1 − (n− 1)l
nl

sl+1 = 1 −
(

1− 1

n

) (
1− 2

n

)
...

(
1− l

n

)
(1 − m)l+1

=
1 + 2 + ...+ l

n
+ (l + 1)m + ∆(n,m)

=
l (l + 1)

2n
+ (l + 1)m + ∆(n,m),

where ∆(n,m)/m → 0 and ∆(n,m)n → 0.

A question that comes naturally to mind is whether for the threshold model in Example
3, we can find the exact value ofms, in the case of weak selection. Unfortunately we have not
been able so far to compute the exact value of

∑
k≥θ πk. We can, nevertheless, use the result

in (52) above, that states that when n is large and m is small, then
∑

k≥θ πk ≈ (1−θ/n)2mn.
Using this approximation in combination with (43), yields

ms ≈
log(C/A)

2n log(1− θ/n)
. (56)

This approximation should be good when n is large, and θ/n is not too close to 0, so that
the resulting value of ms is small. When, additionally, θ/n is substantially smaller than 1,
we can further approximate

ms ≈
1

2θ
log

(
A

C

)
. (57)

See Fig. 14, for a comparison of the exact value of ms under weak selection, from the
viability condition (33) (or, equivalently, (43)) and the approximations (56) and (57). Sur-
prisingly, (56) gives a good approximation there even when θ is small.

The approximation (56) for Example 3 can be formalized and extended to a wide class
of models in the following way. (See Fig. 16, for an illustration.) Suppose that there is a
piecewise continuous and bounded function ṽAx , 0 ≤ x ≤ 1, such that

max
k=1,...,n

∣∣vAk − ṽAk/n∣∣ −→ 0, as n→∞. (58)
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Then, the result in (52) above, combined with the continuous mapping theorem, (2.3) in
Section 2.2.b of [11], implies that, when 0 < m̃ <∞,

∑
k

vAk πk −→
∫ 1

0

ṽAx fm̃(x) dx = 2m̃

∫ 1

0

ṽAx (1− x)2m̃−1 dx = Ṽ A(m̃), (59)

in the limit (50), where the last equality introduces a new notation. This means that, in
this limit, the viability condition (33) now reads

Ṽ A(m̃) > 0, or, equivalently,

∫ 1

0

ṽAx (1− x)2m̃−1 dx > 0. (60)

We want to define m̃s as the solution of

Ṽ A(m̃s) = 0. (61)

To assure that this equation has a solution it is sufficient to assume that ṽAx is continuous
at the end-points x = 0 and x = 1. In this case, under under (C1),

Ṽ A(m̃) → ṽA0 = vA1 < 0,

as m̃→∞. And under (C2),

Ṽ A(m̃) → ṽA1 = vAn > 0,

as m̃ → 0. Since clearly Ṽ A(m̃) is continuous in m̃, (61) then must have a solution
0 < m̃s < ∞. If there is more than one solution, then we define m̃s as the largest one. If
condition (C4) holds, then ṽAx is non-decreasing in 0 < x < 1. In this case, the stochastic

monotonicity of the Beta distributions in (a) imply that Ṽ A(m̃) is non-increasing in m̃.

Actually, it is clear, from the behavior of the density fm̃(x) = 2m̃ (1−x)2m̃−1, that Ṽ A(m̃)
is then strictly increasing in m̃, unless ṽAx is constant. Hence, when ṽAx is continuous at 0
and 1 and (C1), (C2) and (C4) hold, (61) defines m̃s uniquely.

The viability condition (60) implies that if we consider a model that satisfies (58), then
in the weak selection regime,

nms → m̃s and R0
s → R̃0

s =
1

1 + 2m̃s

, as n → ∞. (62)

Example 3 satisfies (58), if we take θ = dn θ̃ e, for some 0 ≤ θ̃ ≤ 1, where dye is the

smallest integer larger than or equal to y. In this case, ṽAx = −C, for 0 ≤ x < θ̃, and

ṽAx = −C + A, for θ̃ ≤ x ≤ 1. This yields V A(m̃) = −C + A (1− θ̃)2m̃, and therefore

m̃s =
log(C/A)

2 log(1− θ̃)
, or, equivalently, R̃0

s =
1

1 + log(C/A)

log(1−θ̃)

.
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The approximation (56) can be seen now as a special case of (62).

Example 2 also satisfies (58), if we take a = bn ãc, for some 0 ≤ ã ≤ 1, where byc
is the largest integer smaller than or equal to y (the integer part of y). In this case,
ṽAx = −C + Bx, for 0 ≤ x ≤ ã, and ṽAx = T (−C + Bx), for ã < x ≤ 1. (See Fig. 16.)
Condition (12) is satisfied, when n is large, in case ã > C/B, and fails if ã < C/B. In case
ã = C/B, (12) may be satisfied or fail, depending on whether nã is close to a or a + 1,
but in either case, the left hand side of (12) is of order 1/n, so that it is only marginally
satisfied or violated. In our analysis below, we will not assume that (12) holds. We have,
for this model,

V A(m̃) =
B

2m̃+ 1
− C + (T − 1) (Bã− C) (1− ã)2m̃ + (T − 1)

B (1− ã)2m̃+1

2m̃+ 1
.

Equation (61), does not lead in this case to a simple expression for m̃s, as it did in
Example 3. We can nevertheless still derive very useful information from it. To simplify
the resulting equation, set R = R̃0

s = 1/(2m̃s + 1). Then (61) reads

C − BR = (T − 1)

{
BR +

Bã− C
1− ã

}
(1− ã)1/R, (63)

except in the trivial case ã = 1, in which the right hand side of (63) is 0. This case
corresponds to a = ã n = n, so that types A cooperate only in the first round. Obviously
then, Example 2 reduces to Example 1, and indeed, (63) reduces to (39).

In the opposite extreme, when ã = 0, so that a = ã n = 0 and types A cooperate in
each round of the game, the right hand side of (63) reduces to (T − 1) (C − BR). So (63)
is again reduced to (39), as one should expect.

Note that also when T = 1, Example 2 reduces to Example 1, and (63) reduces to
Hamilton’s rule (39). One can see the right hand sight of (63), as a correction to that form
of the viability condition in the more general Example 2.

Fig. 15 compares the exact values of ms and R0
s for instances of Example 2, under weak

selection, from the viability condition (33), and the approximation provided by solving
(63). Notice in these graphs, that R0

s is significantly smaller than C/B, when ã is close to
C/B.

While somewhat intimidating at first sight, (63) provides good information about the

critical value R̃0
s. We first state the main features of its behavior, and then explain how to

do the computations leading to these claims. Of special importance is the case in which
ã = C/B = min{0 ≤ x ≤ 1 : ṽAx ≥ 0}. In this case (63) simplifies to:

C − BR = (T − 1)BR (1− C/B)1/R. (64)

With C, B and T fixed, R̃0
s is a continuous function of 0 ≤ ã ≤ 1, that takes the value

C/B on both end-points of this domain, is strictly decreasing when 0 ≤ ã ≤ C/B, and
strictly increasing on C/B ≤ ã ≤ 1. It reaches therefore its minimum at ã = C/B, where
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it solves (64). It is not surprising that when C/B ≤ ã < 1, so that (12) is satisfied, we

have R̃0
s < C/B, since in this case, when altruists continue cooperating, it is always in their

interest to do so. But it is somewhat surprising that also when 0 < ã < C/B, we have

R̃0
s < C/B. It is intuitive that R̃0

s should reach its minimal value when ã = C/B, since
then altruists are persisting precisely when they should.

With T and ã fixed, R̃0
s is a decreasing function of B/C, that goes to 0 as B/C → ∞

(Fig. 17). With C, B and 0 < ã < 1 fixed, R̃0
s is a decreasing function of T that behaves

as follows when T → ∞. If 0 ≤ ã < C/B, then R̃0
s → (C − Bã)/(B − Bã), while if

C/B ≤ ã ≤ 1, then R̃0
s → 0. In this latter case, the convergence is rather slow, in that R̃0

s

behaves asymptotically as (log(1/(1− ã)))/ log(T ). (See Fig. 18.)
The claims above follow from the behavior of the left hand side and the right hand

side of (63). We denote them respectively by H(R) = HC,B(R) and G(R) = GC,B,T,ã(R).
(With G(0) = 0, so that G is continuous on the interval [0, 1]. Note that not only G(R),
but also all its derivatives converge to 0 as R→ 0.) See Fig. 19, for an illustration of what
follows. The function H(R) is very straightforward; it is a strictly decreasing function of
R, that is positive for R < C/B and negative for R > C/B. The function G(R) has
the sign of the term inside the curly braces. That term inside the curly braces is 0 when
R = (C − Bã)/(B − Bã). We define R̂ = max{(C − Bã)/(B − Bã), 0}, and observe that

0 < R̂ < C/B, when ã < C/B, and R̂ = 0, when ã ≥ C/B. The term inside the curly

braces, and therefore also G(R), is negative for R < R̂, and positive for R > R̂. Notice
also that once it is positive, G(R) is strictly increasing in R, since it is then the product of
strictly increasing positive functions. The behaviors described so far for H(R) and G(R)

immediately imply that they are equal to each other at exactly one point R = R̃0
s, and that

this point is in the open interval (R̂, C/B).

The various claims about the behavior of R̃0
s as a function of ã, or of B/C, or of T , follow

now from analyzing the behavior of the graphs of H(R) and of G(R), as these parameters
change. We have ∂GC,B,T,ã(R)/∂ã = (T − 1) (C − Bã) ((1/R) − 1) (1 − ã)(1/R)−2, which,
regardless of the value of R, is positive for 0 < ã < C/B and negative for C/B < ã < 1.
This means that the graph of G(R) moves upwards, as ã increases from 0 to C/B, and then
moves downwards, as ã increases from C/B to 1. In the extremes, G(R)→ (T−1)(BR−C),
as ã → 0, for all R > 0. (This convergence is not uniform, since the function G(R)
converges to 0 as R→ 0.) And G(R)→ 0, uniformly in R, as ã→ 1. These facts, and the
trivial behavior of H(R) that does not depend on ã, provides us with the facts about the

dependence of R̃0
s on ã.

The fact that R̃0
s depends on C and B only through B/C can be seen by dividing both

sides of (63) by C. The fact that R̃0
s decreases asB/C increases follows easily from observing

that the graphs of H(R) and G(R) move, respectively, down and up, as B increases, with

C fixed. And the fact that R̃0
s → 0, as B/C →∞, is immediate from 0 < R̃0

s < C/B (Fig.
17).

If we keep B, C and 0 < ã < 1 fixed and let T ↗∞, then G(R) also goes monotonically

to ∞, for R̂ < R < C/B, and stays at 0 for R = R̂. The corresponding behavior of the
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graph of G(R), and the fact that R̃0
s is the point in R̂ < R < C/B where this graph

intersects the graph of the decreasing function H(R), shows that, as claimed above, R̃0
s is

decreasing in T , and as T → ∞, R̃0
s → R̂ (Fig. 20). The claim about the slow speed of

this convergence, in case C/B ≤ ã < 1, can be obtained by taking the logarithm of both
sides of (63) and analyzing how the resulting terms behave as T →∞.

It is interesting to contrast (42), for iterated pairwise prisoner dilemma with types N
defecting and types A playing tit-for-tat (Example 4, (14)) with our analysis above of the
behavior of R0

s in Example 2, which is an iterated public goods game (an analogue of the
prisoner dilemma in a multi-individual setting), with types N defecting and types A playing
many-individual tit-for-tat. There are several expected similarities in the behavior of R0

s

in both cases, as a function of costs, benefits and expected number of repetitions of the
game. But there are also important differences to emphasize. There are differences in the
details of the behavior. For instance, R0

s goes to 0, as T → ∞, much more slowly in the
case of Example 2, when it does go to 0. But equally important, we want to mention the
differences in the level of complexity of the analysis in each case. While (42) holds for
arbitrary n and resulted from a standard Hamilton rule, (39), our analysis of Example 2
above relied on the much more elaborate results developed in this section, and depended
on n being large. One of the main messages of the current paper is that when interactions
involve several individuals at a time in the groups, one needs methods that go beyond those
that apply to pairwise additive interactions.

It is important to explain why the assumptions made in [7] on how much assortment
to expect in Example 2, and later used in several papers, including [6], are excessively
pessimistic. In [7] it was supposed that conditioned on the focal individual being type
A, the other n − 1 members of the focal group would be type A independently, with
probability IPt(A2|A1). In our framework, given that the focal is type A, and that the
co-focal is also type A, further increases the conditional probability that a third member of
the group is type A. Given then that a third individual is type A, again further increases
the probability that a fourth individual is type A, and so on. This is so because the
information being successively provided keeps increasing the probability that there were
several types A in the previous generation in the group from which the focal descends.
It is very interesting to make the computation of R̃0

s using the assumption of [7] and
compare the result with what we have obtained from (63). Under that assumption of
conditional independence, the viability condition (33) for the regime of weak selection,
would be replaced with

∑
k v

A
k IP (Bin(n−1, R0) = k−1) = 0. Assume that (58) holds and

define ṽA∗x as ṽAx , when x is a continuity point of ṽAx , and as the average between the limits
of ṽAx from the left and from the right at x, otherwise. (We are supposing that these limits
exist, as is the case in Example 2.) Then, by a central limit theorem, in the limit (50).∑

k

vAk IP (Bin(n− 1, R0) = k − 1) −→ ṽA∗
R̃0 .

45



(Compare with (59).) Instead of (61), we would then have

ṽA∗
R̃0

s
= 0. (65)

For Example 2, the only solution of (65) is R̃0
s = C/B, regardless of the value of ã. This

result would not depend on T , and would differ substantially from our result in case, e.g.,
ã ≥ C/B, T large, which has R̃0

s << C/B. (See Fig. 15, Fig. 17, Fig. 18 and Fig. 20.)
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Figure 1: Illustration summarizing the two-level Fisher-Wright process with selection and
migration. Here w(j, α, t) is the fitness of individual j of group α in generation t, and
w̄(α, t) is the average fitness of the members of group α in generation t. Intergroup level:
in generation t + 1 each and every one of g groups choses a parent group α from the
previous generation independently with probability proportional to w̄(α, t). Intragroup
level: each individual inside a child group then independently choses an antecessor j among
n individuals in his parent group with probability proportional to w(j, α, t) . Migration:
each individual in each group is marked as a migrant with probability m, migrants are then
randomly shuffled.
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Figure 2: Payoff profiles. Payoffs for the wild (“non-altruist”, N) type vNk are represented
as red circles while black squares depict payoffs vAk for the mutant (“altruist”, A) type.
From top left: Public goods game (PG, Example 1) for n = 20, C = 1 and B = 5. Iterated
public goods game (IPG, Example 2) for n = 20, C = 1, B = 5, a = 4 and T = 10.
Threshold model (THR, Example 3) for n = 20 C = 1, θ = 4 and A = A′ = 10. General
linear fitness (GLF, Example 4) for n = 20, C = 1, B = 5 and B′ = 2. Variable costs and
benefits (VCB, Example 5) with Ck = C/ka1 , Bk = bk2/(1 + dk2) and B′k = b′k2/(1 + d′k2)
for n = 20, C = 1, a1 = 0.5, b = b′ = 2, d = 0.05, d′ = 0.065. Iterated game (IG, Example
6) with cost and benefit functions as in the VCB case and Tk = 1 if k ≤ 5, T6 = 2, T7 = 2.5
and Tk = 3 if k ≥ 8.
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Figure 3: Perron-Frobenius eigenvalues ρ as a function of m for δ = 0.1, 0.2 and 0.4.
From top to bottom: Public goods game (PG, Example 1) with n = 20, C = 1, B = 5.
Iterated public goods (IPG, Example 2) with n = 20, C = 1, B = 5, a = 8 and T =
10. Threshold model (THR, Example 3) with n = 20, C = 1, θ = 4, A = A′ = 10.
Critical migration values ms are obtained by solving ρ(ms) = 1. These figures should be,
respectively, compared to Figure 4, Panel B, blue dashed line (PG); Figure 5, Panel B, blue
dashed line (IPG); and Figure 6, Panel A, blue dashed line (THR).
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Figure 4: Public goods game (Example 1): Panel A represents critical values ms as a
function of the strength of selection δ. Curves correspond to the case C = 1, B = 2 and
n = 10 (top, black dotted line), n = 20 (middle, blue dashed line) and n = 50 (bottom,
magenta full line). Red lines indicate critical values at the weak selection limit obtained
from the viability condition (33), or (40). The inset shows the same curves within the full
range of possible values for ms. Panel B depicts the same conditions except for B = 5.
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Figure 5: Public goods game (Example 1): Perron-Frobenius eigenvectors νk as a function
of the strength of selection δ (rows) and of the migration rate parameter m (columns).
Critical migration rates mδ

s are annotated in each row. Perron-Frobenius eigenvalues ρδ(m)
are also provided for each case. Histograms represent the case C = 1, B = 2 and n = 20.
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Figure 6: Iterated public goods game (Example 2): Critical values ms as a function of the
strength of selection δ. Panel A depicts the case n = 20, C = 1, B = 5, a = 4 with,
respectively from bottom to top, T = 1 (dotted black line), T = 10 (dashed blue line),
T = 100 (dot-dashed magenta) and T = 500 (green full line). Panel B depicts the same
conditions except for a = 8. Red lines indicate critical values at the weak selection limit
obtained from the viability condition (33).
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Figure 7: Threshold model (Example 3): Critical values ms as a function of the strength of
selection δ. Panel A depicts the case n = 20, C = 1, θ = 4 with, respectively from bottom
to top, A = A′ = 5 (dotted black line), A = A′ = 10 (dashed blue line), A = A′ = 50 (dot-
dashed magenta) and A = A′ = 100 (green full line). Panel B depicts the same conditions
except for θ = 8. Red lines indicate critical values at the weak selection limit obtained
from the viability condition (33), or (43).
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Figure 8: Perron-Frobenius eigenvectors νk for selection strengths δ = 0.01 (left column),
δ = 0.3 (middle column) and δ = 0.7 (right column). Migration rate is set to m = 0.1
and group sizes to n = 20. Each line represents a different model. The top row, labeled as
PG depicts the Public Goods game (Example 1) with parameters C = 1 and B = 2. The
Iterated Public Goods game (Example 2) with parameters C = 1, B = 4, a = 4 and T = 10
is shown in row at the middle, labeled as IPG. The bottom row shows Perron-Frobenius
eigenvectors for the Threshold model (THR, Example 3) with C = 1, A = A′ = 5 and
θ = 4. The leftmost column emphasizes that the weak selection limit ν0k is independent of
the model. In contrast, when selection is strong, νδk depends on the model, as illustrated
in the other columns.
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Figure 9: This diagram illustrates the concept of identity by descent (IBD) as it is em-
ployed in the framework we have introduced. Two individuals X an Y in a given group in
generation t, regardless of their type, are identical by descent (IBD) if their lineages, when
followed back in time, coalesce before a migration event (indicated by a dashed arrow in
the figure in the right panel). Considering a migration rate of m, migration typically takes
place within a random number, of order 1/m of generations back.
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Figure 10: This diagram illustrates the discussion that leads to (45). KD
u represents the

number of individuals that are IBD to a focal individual Fu (red circle) in generation u.
Two scenarios are discernible for the previous generation u−1. MC1 (left panel): the focal
individual is a migrant. This can happen with probability m and, in the ES for g → ∞,
implies that KD

u = 1. MC2 (right panel): the focal individual Fu (red circle) is a child of
Fu−1. Each individual in the focal group in generation u choses a parent from the group
of Fu−1 in the previous generation with uniform probability, as δ = 0. With probability
KD
u−1/n a parent is IBD with the focal individual Fu−1 (orange circles) and, consequently,

his children are also IBD with Fu. Additionally, each individual in generation u can migrate
with probability m. The number of IBD individuals in generation u is, therefore, the focal
individual himself plus a number of individuals given by a binomial random variable with
probability of success (1−m)KD

u−1/n in n− 1 trials.
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Figure 11: Distribution πk given by (32), or (46) (bars) compared with kνδk/
∑

k′ k
′νδk′ ,

where νδk is the Perron-Frobenius eigenvector with δ = 0.01 for the Threshold model (THR,
Example 3) with parameters n = 20, C = 1, A = A′ = 5 and θ = 4 (red diamonds). The
comparison is repeated for migration rates m = 0.01 (top panel) and m = 0.1 (bottom
panel).
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Figure 12: Limit of large n and small m under weak selection. This figure compares tail
probabilities for the distribution πk provided by (32) (stairs) and for Beta densities with
parameters α = 1 and β = 2m̃. Panel A shows the case n = 20 for, from top to bottom,
m = 0.01 (red dotted line), m = 0.1 (blue dashed line) and m = 0.5 (black dot dashed
line). Panel B depicts the same scenarios for the case n = 100.
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Figure 13: Relatedness and migration rate under weak selection. For ease of comparison
this figure depicts the relatedness R0

s (38) as a function of the migration rate ms for, from
top to bottom, n = 20 (dot-dashed blue line), n = 50 (dashed green line) and n = 100 (full
red line).

64



Figure 14: Limit of large n and small m under weak selection for the Threshold model
(Example 3). Panels represent critical migration rates (A and C) and critical relatedness
(B and D) for the Threshold model with C = 1 and A = A′ = 10 as a function of θ̃ = θ/n.
Top panels A and B depict the case n = 20. Bottom panels C and D depict the case n = 100.
In each panel critical values obtained by the viability condition under weak selection (33),
or (43) (viability cond., black full lines) are compared with the approximation for large n
and small m given by (56) (approx. 1, dashed blue lines) and with the approximation (57)
that assumes n large, m small and also θ̃ � 1 (approx. 2, dotted red lines).
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Figure 15: Limit of large n and small m under weak selection for the Iterated public goods
(IPG) game (Example 2). Panels represent critical migration rates (A and C) and critical
relatedness (B and D) for the IPG with C = 1, B = 5 and T = 100 as a function of
ã = a/n. Top panels A and B depict the case n = 20. Bottom panels C and D depict the
case n = 100. In each panel critical values obtained by the viability condition under weak
selection (33) (viability cond., black full lines) are compared with the approximation for
large n and small m given by solving (63) in R (approx., dashed blue lines). In panel B we
have R0

s = 4.02% when ã = 20%, and in panel D we have R0
s = 5.54% when ã = 20%.
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Figure 16: Viability condition in the limit of large n and small m under weak selection.
The case illustrated is the Iterated public goods (IPG) game (Example 2) with with C = 1,
B = 2 and T = 4. The first column depicts the density fm̃(x) for m̃ = 1.50, 0.91, 0.40.
The bottom row represents the payoff function ṽAx for ã = 0.3, 0.5, 0.7. The grid with nine
plots represents ṽAx fm̃(x) with m̃ and ã as specified in each row and column. The viability

condition is given by Ṽ A(m̃) =
∫ 1

0
dx ṽAx fm̃(x) > 0. As m̃ is decreased, the positive part of

the integrand increases, eventually reaching the critical value m̃s (annotated in the top of
each column). Payoffs are maximized for ã = C/B, implying a maximal value for m̃s (in
the case depicted m̃s = 0.919). Decreasing ã, increases the negative part of ṽAx fm̃(x) and,

consequently, decreases m̃s (increases R̃0
s). Increasing ã, decreases the positive part of the

integrand and also decreases m̃s.

67



Figure 17: Limit of large n and small m under weak selection for the Iterated public
goods (IPG) game (Example 2): behavior of solutions for (63) - Part 1. Top panel: H(R)
corresponds to the l.h.s. of (63) while G(R) depicts the r.h.s. of (63). H(R) is strictly
decreasing and it is positive for R < C/B. Derivatives of G(R) converge to 0 as R → 0.
H(R) and G(R) are equal to each other at exactly one point R = R̃0

s that is a decreasing
function of C/B. Curves depicted correspond to the cases C/B = 0.5 (full black line),
C/B = 0.2 (dashed red line) and C/B = 0.1 (dot-dashed blue line) with ã = C/B and
T = 100. Bottom panel: R̃0

s as a function of ã for C/B = 0.5 (top, full black line),
C/B = 0.2 (middle, dashed red line) and C/B = 0.1 (bottom, dot-dashed blue line) and
T = 100. R̃0

s is continuous in the interval 0 ≤ ã ≤ 1, takes the value C/B on both
end-points of this domain and has a minimum at ã = C/B.
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Figure 18: Limit of large n and small m under weak selection for the Iterated public goods
(IPG) game (Example 2): behavior of solutions for (63) - Part 2. Top panel: G(R) and
H(R) for C/B = 0.5, ã = 0.5 and T = 10 (leftmost, full black line), T = 103 (dashed red
line) and T = 105 (dot-dashed blue line). R̃0

s is a decreasing function of T . Bottom panel:

in the limit T →∞, if 0 ≤ ã < C/B then R̃0
s →

C/B−ã
1−ã (full magenta line). If C/B ≤ ã ≤ 1

then R̃0
s → 0 very slowly.
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Figure 19: Limit of large n and small m under weak selection for the Iterated public goods
(IPG) game (Example 2): behavior of solutions for (63) - Part 3. H(R) (strictly decreasing
straight line) and G(R) for C/B = 0.5 and T = 10 for ã = 0.01, 0.1, 0.3, 0.4, 0.5 from
right to left in Panel A and for ã = 0.5, 0.6, 0.7, 0.9, 0.999 from left to right in Panel B.
The graph of G(R) moves upwards for 0 ≤ ã < C/B and downwards for C/B ≤ ã ≤ 1.
G(R) → (T − 1)(BR − C) as ã → 0 (dashed magenta line in Panel A). In Panel B it can
be seen that G(R)→ 0 as ã→ 1.
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Figure 20: Limit of large n and small m under weak selection for the Iterated public goods
(IPG) game (Example 2): behavior of solutions for (63) - Part 4. In all panels C/B = 0.5.
Panel A depicts R̃0

s as a function of 1/ log(T ) for ã = 0.3 (full black line) and for ã = 0.7

(dashed red line). For 0 ≤ ã < C/B R̃0
s →

C/B−ã
1−ã (this value is approximately 0.286 for

the case shown). If C/B ≤ ã ≤ 1 then R̃0
s converges to 0 very slowly as T increases,

more specifically R̃0
s ∼ − log(1 − ã)/ log(T ) (dotted magenta line). Bottom panels show

the behavior of G(R) as T increases. Panel B: case ã < C/B for, from right to left,
T = 2, 10, 100, 500. Panel A: case ã > C/B for T = 2, 10, 100, 500, from right to left. G(R)

stays at zero for R̂ = max{C/B−ã
1−ã , 0} and goes monotonically to infinity for R̂ < R < C/B.
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