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Abstract

We observe that the Taylor-Frank method for making kin selection models when fitness w is a nonlinear

function of a continuous actor’s phenotype y and the average phenotype z in its social environment

requires w(y, z) to be differentiable (as a function of two variables, i.e., jointly in y and z). This means

that even if w(y, z) is non-linear globally, locally it must be close to linear, meaning that its graph must

be well approximated by a plane. When more than two individuals interact, this assumption is only

satisfied when the marginal fitness of the actor is a linear function of the fraction of individuals in its

social environment that share its phenotype. This assumption sometimes fails for biologically important

fitness functions, for instance in microbial data and the theory of repeated n-person games. In these

cases, the Taylor-Frank methodology cannot be used, and a more general form of direct fitness must

replace it, to decide when a social mutant allele can invade a monomorphic population.

Introduction

According to Hamilton’s rule, the fitness of an allele should be measured by how much it affects the

reproductive success of its carriers, added to the effect that its carriers have on the reproductive success

of others weighted by relatedness [1]. In its original formulation, Hamilton’s rule required additive fitness

effects [2], and a number of extensions have been developed to deal with nonlinearities (reviewed, e.g.,

in [3–5]). In one of the most influential extensions, [6], it is assumed that (1) fitnesses are functions of
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two variables: a continuously varying actor’s phenotype y and the average value z of this phenotype in

the actor’s social environment, and (2) phenotypic variation is small. This approach has been applied

to a wide range of biological problems (see, e.g., [3], [7], [4, Box 6.1] and [5, Box 6]), and it has been

suggested (see e.g., [3, pp. 37-38], [4, pp. 137-138] and [5, Box 6]) that it shows that Hamilton’s rule,

in terms of marginal costs and benefits, can always be applied to problems with continuously varying

phenotypes, as long as variation in the traits is small enough. However, as we explain in the next section,

the Taylor-Frank method depends on the assumption that fitness functions are differentiable as functions

of y and z. (To be clear: differentiable as function of two variables, not just differentiable in each

variable separately [8]). This means intuitively that in the relevant region of small phenotypic variation,

the fitness function must be close to a linear function of y and z. When more than two individuals

interact, this assumption is only satisfied when the marginal fitness of the actor is a linear function of the

fraction of individuals in its social environment that share its phenotype. And in the section on biological

significance we point out that fitness functions that occur in real biological applications may not be

differentiable (see, e.g., equation (6) that corresponds to an n-player repeated interaction). When this

is the case one cannot use the chain rule of multi-variable calculus that is the basis of the Taylor-Frank

method. Some important treatments of social evolution that utilize the Taylor-Frank method assume

explicitly that fitness functions are differentiable as functions of the relevant variables (see, e.g., [9, p.

95]), and in this way restrict the applicability of their conclusions. But others, ( [3, pp. 37-38], [4, pp.

137-138] and [5, Box 6] omit the assumption and come to conclusions that are not as widely applicable

as they suggest. Moreover, in at least one published paper [10] the Taylor-Frank method was applied

in a situation in which the differentiability condition is violated, yielding incorrect expressions for the

evolutionary stability of equilibria (see the end of the section on biological significance). We will explain

also in the next section, how the Taylor-Frank direct fitness method can be generalized to apply to

problems for which one cannot make this assumption of differentiability.

Invasion by a rare mutant under weak selection

The Taylor-Frank direct fitness approach assumes that the fitness of an individual is affected by its

own phenotype and the phenotypes of other individuals in its social environment. Individual phenotype

is represented by a heritable quantitative character y. For instance, y could represent the amount of
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some costly to produce substance that the individual secretes in the environment and that is beneficial

to nearby individuals. Initially all individuals in the population have the same value of this character,

y = ȳ. Rare mutations produce a variant with y = ȳ + δ, where |δ| is small. The rare mutant will

invade if its average fitness, wm, is higher than that of the wild type, ww. To compute these average

fitnesses, randomly select a focal individual from the population. Following [6], we denote by w(y, z) the

fitness of a focal individual with phenotype y, in a social environment in which the average phenotype is

z (note that w(y, z) depends also on ȳ, but since this quantity is fixed, it is omited from this notation).

If the focal is a wild type, all the individuals in its social environment are likely to be wild types, and

therefore, z = ȳ, and ww = w(ȳ, ȳ). But if the focal individual is a mutant, other individuals in its

social environment may also be mutants, for instance due to common descent. Let X be the random

variable that represents the fraction of members of the social environment of a mutant individual that

are mutants. Then z = (ȳ + δ)X + ȳ(1 −X) = ȳ + δX = Z, and wm = IEw(ȳ + δ, ȳ + δX), where the

expectation (denoted by IE) is taken over social environments, i.e., over X. The mutants will invade the

population when wm − ww = IEw(ȳ + δ, ȳ + δX)− w(ȳ, ȳ) > 0. Because |δ| is small, one needs only to

consider the behavior of the function w(y, z) in the neighborhood of the point where y = z = ȳ. Key to

the Taylor-Frank approach is the assumption that the chain rule of multi-variable calculus applies and

gives, neglecting terms that are much smaller than |δ|,

wm − ww = δ IE

{
∂w

∂y

∣∣∣∣
y=z=ȳ

+ X
∂w

∂z

∣∣∣∣
y=z=ȳ

}
= δ(−C +BR), (1)

where −C and B are the values of the partial derivatives in the y and z directions at the point y = z = ȳ

and

R = IE(X) =
IE(Z)− ȳ

δ
=
IE(Z)− ȳ
y − ȳ

is the average relatedness in the social environment of a mutant individual (see [2]). Provided that one

can apply the chain rule, as above, the conclusion is that Hamilton’s rule

C < BR (2)

is the necessary and sufficient condition for the mutants to invade the monomorphic population with

phenotype ȳ.
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However, the use of the chain rule requires (see, e.g., [8]) that the function w(y, z) be differentiable,

meaning that it is well approximated by a linear function of y and z, in the neighborhood of (ȳ, ȳ). That

is, up to an error term that is much smaller than |y − ȳ|+ |z − z̄|, we must have in good approximation

w(y, z) = α + βy + γz, in the neighborhood of (ȳ, ȳ). In other words, the surface that represents the

function w(y, z) must be well approximated by a plane in the neighborhood of (ȳ, ȳ). In a one-dimensional

setting, differentiability at a given point means that the graph of the function is well approximated by a

straight line close to this point. In two dimensions, differentiability at a point means that the graph of

the function is well approximated by a plane close to this point. To better understand this well known

concept, see its biological meaning and relate it to the chain rule, assume only that for every value of x

in the range from 0 to 1, the “directional derivative” of w(y, z),

v(x) =
dw(y, yx+ ȳ(1− x))

dy

∣∣∣∣
y=ȳ

(3)

in the direction of the straight line z = yx+ ȳ(1− x), is well defined. (The proper directional derivative

is defined as dw(y, yx + ȳ(1 − x))/
√

(dy)2 + (d(yx+ ȳ(1− x)))2 = v(x)/
√

1 + x2.) This “directional

derivative” v(x) gives the incremental fitness effect of changes in y for a given fixed fraction x of mutants

in the social environment. These derivatives can exist for every value of x and at the same time w(y, z)

can fail to be differentiable in (y, z)—see Fig. 1 for an example in which w(y, z) is not differentiable,

despite v(x) being a smooth function. Neglecting an error term much smaller than δ, we have

w(y, z)− w(ȳ, ȳ) = δv(x),

when y = ȳ + δ is close to ȳ and (z − ȳ)/(y − ȳ) = x. The quantity v(x) is therefore the marginal fitness

of a focal mutant, in a social environment with a fraction x of mutants. Differentiability of the function

of two variables w(y, z) at (ȳ, ȳ) implies, through the chain rule applied to (3), that v(x) must be the

linear function of x given by v(x) = −C + Bx, with −C = ∂w/∂y|y=z=ȳ and B = ∂w/∂z|y=z=ȳ. This

condition may or not hold in biologically relevant situations (see section on biological significance). It is

only when it holds that (1) is valid and (2) is the correct condition for invasion.

This means that the Taylor-Frank approach does not apply to situations in which the marginal

fitness v(x) of the mutants is a non-linear function of the fraction x of mutant individuals in the social

environment. There is nevertheless no difficulty in obtaining a valid (direct fitness, kin selection) condition
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for invasion, based only on the assumption that the “directional derivatives” v(x) exist. The quantity

δv(x) is close to the difference in fitness between a mutant focal individual in a social environment with

a fraction x of mutant individuals and the fitness of a wild focal individual in an environment in which

everyone is of wild type. Therefore, when δ is small, neglecting terms that are much smaller than |δ|, we

have

wm − ww = δ IE (v(X)) . (4)

The condition for the mutants to invade the monomorphic population with phenotype ȳ is therefore

IE (v(X)) > 0, (5)

which generalizes Hamilton’s rule (2), and reduces to it precisely when v(x) = −C + Bx is a linear

function of x, i.e., when the interaction of the individuals in each environment affects fitnesses of mutants

as a linear public goods game. We will show in a later section that the same conclusion holds when costs

and benefits are conceptualized as regression coefficients of fitness against phenotypic value. To compute

the expected value in (5) one needs to know the distribution of X. In the next section we will discuss

cases in which this has been done, and (5) was used to evaluate theory against empirical population

parameters.

The contrast between the simplicity and apparent generality in the derivation of (1) and the limitations

explained in the previous paragraph may seem puzzling at first sight. This apparent paradox is solved

once one understands that condition (1) relies on the assumption that w(y, z) is differentiable in the

neighborhood of the point where y = z = ȳ, and that this means that the surface that represents this

function is well approximated by a plane close to that point. To see why this assumption can fail, consider

Fig. 1 in which the difference in the fitness of mutants and wild types, w(y, z) − w(ȳ, ȳ) ≈ δv(x), is a

sigmoidal function of the fraction of mutants, x, for each given value of δ. As the value of δ decreases,

the values of |w(y, z) − w(ȳ, ȳ)| approach 0, but the sigmoidal shape does not change, implying that

also the limit v(x) is sigmoidal, rather than a linear function. This means that the surface representing

w(x, z) cannot be approximated by a plane, close to (ȳ, ȳ). Of course, as the usefulness of the Taylor

series approach throughout science attests, most nonlinear functions of interest (in two variables) are

well approximated by a plane in the neighborhood of a point. When this happens in our setting, the

Taylor-Frank approach is correct. However, as we explain in the next section, there are important
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biological applications for which data or theory indicate that this is not the case and (1) and (2) are not

a good approximation for (4) and (5), which instead are proper expressions of kin selection in those cases

(assuming rarity of the mutant type and small trait variability, i.e., small |δ|).

It is important to observe that (5) is the appropriate condition for invasion, regardless of the size of

the social environment. The random variable X only takes values that are multiples of the inverse of the

size of the social evironment and that lie between 0 and 1. In the extreme case of diadic interactions, the

social environment has a single individual and X can only take the values 0 or 1. Since functions with

only two points in their domain are always linear, this means that in this case (5) reduces to (2). For

social environments with more than 2 individuals v(x) may or not be linear, and it is precisely when it

is linear that (5) reduces to (2), and not otherwise (see [11] for a similar discussion).

Biological significance

There are at least two biological contexts in which non-linear marginal fitness functions v(x) are impor-

tant.

First, experimental evidence from micro-organisms [12–14] is available, for instance from direct ma-

nipulation of the fraction of individuals with different genotypes/phenotypes in a social environment and

measurements of their rates of reproduction. Such data indicates that sometimes v(x) is non-linear in the

fraction of mutants x. One could argue that experimental data does not refer to a limit in which δ → 0,

and that the data comes from situations in which selection may be strong. This raises the question of

how small δ has to be for one to regard selection as weak. Basically selection is weak when the differences

in phenotype in the population produce only minor differences in reproductive success, so that one can

compute (4) assuming that the expectation corresponds to neutral drift without selection. (Separation

of time scales; see, e.g., [9, 15–17].) Whether δ can be that small while v(x) is empirically non-linear is

an important question to be investigated experimentally.

Second, in repeated n-player games successful strategies make cooperation contingent on behaviors

of others in the group. To see how nondifferentiable fitness functions arise in such repeated games,

consider the iterated n-person prisoner’s dilemma (or public goods game) [17–19], iterated T times in

a life cycle. Social interactions of this kind are likely to be important in all kinds of social vertebrates,

and especially primates. Chimpanzee patrolling and human food sharing may be examples. Suppose
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Figure 1. The surface representing w(y, z)− w(ȳ, ȳ) in the neighborhood of the point (y, z) = (ȳ, ȳ).
This point appears in the left side of the picture, and the function takes the value 0 there. In the
picture y ranges from ȳ to ȳ + δ, and z ranges from ȳ to y. The parameter x = (z − ȳ)/(y − ȳ) identifies
directions in the (y, z) plane, away from the point (y, z) = (ȳ, ȳ), and biologically represents the fraction
of individuals in the social environment of a mutant focal individual that are also mutants. The values
of the “directional derivatives” v(x), which represent marginal fitnesses, are indicated by the s-shaped
curve produced by the intersection of the surface with the plane y = ȳ + δ (this s-shaped curve appears
as the frontal border of the blue surface in the picture). The surface would only be well approximated
by a plane, in the neighborhood of (y, z) = (ȳ, ȳ), if v(x) were a linear function, rather than s-shaped.
Notice that w is not differentiable anytime that v(x) is a non-linear function of the fraction of
mutant-types in the social environment; no kinks or discontinuities are necessary. When, as in this
picture, differentiability at (y, z) = (ȳ, ȳ) fails, one can not use the chain rule as in the derivation of (1),
but the more general (4) still applies and provides the direction of selection.

that individuals interact repeatedly in groups of size n, and the extent of individual prosocial action is

a continuous variable (e.g. the amount of food shared, or the level of risk taken on). Let the value of

this variable for individual j be yj and the fitness effect of one period of interaction for individual j be

−cyj + b
n−1

∑
i 6=j yi = −cyj + bzj , where the sum is over the other members of individual j’s group.

Individual behavior is contingent. The wild types always give ȳ = 0. However there is a rare invading

type that gives y = ȳ + δ = δ in the first interaction, where δ > 0 is small, and continues to give this
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amount as long as the other group members give in the average at least δθ, where θ > 0 is a threshold

parameter. Setting w0 = w(ȳ, ȳ) = w(0, 0), the fitness function takes then the following form:

w(y, z) =

 w0 − cy + bz, if y, z ≥ 0, z < θy,

w0 + (−cy + bz)T, if y, z ≥ 0, z ≥ θy.
(6)

In order to compute the marginal fitness function v(x), using (3), we assume z = yx+ ȳ(1− x) = yx, so

that (6) becomes

w(y, yx+ ȳ(1− x)) = w(y, yx) =

 w0 + y(−c+ bx), if y ≥ 0, 0 ≤ x < θ,

w0 + y(−c+ bx)T, if y ≥ 0, x ≥ θ.

This yields, from (3), the non-linear marginal fitness function

v(x) =

 −c+ bx, if x < θ,

(−c+ bx)T, if x ≥ θ.
(7)

This expression for v(x) is intuitive, and can be obtained more directly from the following reasoning.

If there is a fraction x < θ of mutants in the social environment, the focal actor will contribute δ and

receive δx < δθ in the first iteration, and stop contributing. If, x ≥ θ, on the other hand, this actor will

continue to contribute, as will all the other mutants in the group, for the same reason. In the former

case the effect on the actors fitness is accounted as −cδ + bδx, while in the latter case it is this amount

multiplied by the number of iterations, T . Since v(x) is the fitness effect divided by δ, we obtain (7)

and its meaning becomes clear. The source of the non-linearity in v(x) in this example becomes also

clear, as a consequence of the contingent behavior based on a threshold on the fraction of mutants in the

group. When we compute v(x), this fraction x is fixed, and the resulting expression for v(x) will change

in nature, as x crosses the threshold. Contingent behavior that leads to non-linear fitness functions is a

common feature in the modeling of social evolution, especially of human cooperation; see, e.g., [20] and

references therein.

It is important to understand that the non-differentiable w(y, z) of example (6) has well defined

partial derivatives ∂w/∂y|y=z=ȳ = −c and ∂w/∂z|y=z=ȳ = bT . If one applied the Taylor-Frank method

as proposed in [4–6], without knowing that differentiability is required, one would conclude that the
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condition for invasion of the mutant allele is given by (2), which here reads

c < bTR. (8)

This would mean that if the game were repeated, say, 100 times in a life cycle, and b = 5c, then the critical

relatedness required for the altruistic behavior to invade the population would be R = 0.002 = 0.2%; an

extremely low value. We will see below that (8) is far from correct, and that a correct condition can be

derived from (5), under biologically plausible assumptions.

Hamilton’s rule (2) is appealing because the only information needed about patterns of interaction is

the relatedness R. Assuming δ small enough, R can be obtained from the distribution of neutral genetic

markers in the same population. That is, there is a separation of time scales so that changes due to

demographic processes occur much faster than changes due to selection. When (5) has to replace (2), R

is not enough. More detailed information is needed about the distribution of X. This point was also made

in [11]. However as long as selection is weak, the separation of time scales exists and the distribution of

X can be calculated using the distribution of neutral genetic markers. Problems of this type have been

addressed in a number of papers, including [15–17,21]. This approach was applied in [17] to the iterated

public goods game (6), in a population structured in groups, in which individuals compete within the

groups, while groups also compete among themselves, and in which migration among groups also takes

place. For this population structure, it was shown there that when groups are large the distribution of X

is a beta(α,β) distribution, with parameters α = 1 and β = 2×(group size)×(migration rate) = (1/R)−1,

which has probability density function β(1− x)β−1, 0 < x < 1. The expected value in the generalization

of Hamilton’s condition given by (5) can then be computed and this condition becomes

∫ 1

0

(1− x)(1/R)−2 v(x) dx > 0. (9)

In the case of (6) and the corresponding (7), the integration in (9) is straightforward and the resulting

invasion condition in terms of the threshold θ and the relatedness R was obtained and its consequences

analyzed in the supplementary material of [17], Section 8. Here we recall only the case emphasized in

that paper: when θ = c/b and T is large, the condition for invasion takes the simple form

− ln(1− c/b) < R lnT, (10)
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illustrating the usefulness of (5). This expression was used in [17] to show that even in large groups, strong

altruistic behavior can proliferate when rare, under biologically realistic conditions, through population

viscosity without the need of kin recognition, or greenbeard effects. For instance, when as above T = 100

and b = 5c, the critical relatedness required for the altruistic behavior to invade the population would

be R = 0.048 = 4.8%. This is a modest value, compatible with available data for several species, [22]

(Tables 6.4 and 6.5), [23], [24] (Table 4.9) and [20], but substantially different from the incorrect value

obtained from (8).

It is important to understand that it is not the discontinuity in v(x) in the example above that is

relevant, but rather its non-linearity. To illustrate this point, consider a generalization of (6) of the form

w(y, z) =

 w0 + (−cy + bz)f(z/y), if y > 0, z ≥ 0,

w0 + bzT, if y = 0, z ≥ 0,
(11)

where limx→∞ f(x) = T . Such a fitness function results, for instance, from a modification of the example

above, in which the cooperative mutants cooperate in each iteration with a probability that may depend

on the number of individuals that cooperated in previous rounds. For 0 ≤ x ≤ 1, the function f(x)

gives the expected number of times that a cooperator cooperates, when the fraction of cooperators in

its group is x. In case f is the threshold function that takes value 1 when x < θ and value T when

x ≥ θ, (11) becomes (6). But one can argue that biological considerations, as the inclusion in the model

of possible perceptual errors by the group members, suggest that an analytic function f would be more

appropriate; possibly a sigmoid function that is close to 1 below the threshold θ, and close to T above

this threshold. We will observe next that this makes no difference in our discussion. In this example,

w(y, yx+ ȳ(1−x)) = w(y, yx) = w0 +(−c+bx)f(x)y, which yields, from (3), the marginal fitness function

v(x) = (−c+ bx)f(x). (12)

By expanding f(x) in powers of x, we see that v(x) is linear if and only if f(x) is a constant (otherwise

v(x) would include powers of x larger than 1 in its expansion). This corresponds to the case in which the

behavior of cooperators does not depend on the fraction of cooperators in the group. It is only in this

very special case that (2) can be applied to example (11). But we can always apply (5) to this model,
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which for the population structure studied in [17] yields the invasion condition

∫ 1

0

(1− x)(1/R)−2 (−c+ bx)f(x) dx > 0. (13)

It is worth noting that if f(x) is a sigmoid function that is close to the threshold function that takes

value 1 when x < θ and value T when x ≥ θ, then the invasion condition (13) is well approximated by

the invasion condition for the model described by (6), which takes the form (10) when θ = c/b and T is

large. In contrast, the application of the Taylor-Frank (2) to (11) produces also in this case the incorrect

condition for invasion (8).

Another instance in which (5) was applied succesfully is [25], where we considered a population

structure typical of human hunter-gatherers, with individuals organized in ethnolinguistic groups, divided

into socially interacting bands. The distribution that we found for X in this case was more complicated

then the beta distribution found in [17], but still simple enough to allow for estimates of critical values of

relatedness needed for cooperation to proliferate. This allowed us to compare these theoretical threshold

values of relatedness with available estimates of the levels of relatedness observed empirically ( [20,23,26])

and in this way discriminate between mechanisms that could allow cooperation to spread from others

that would not be viable. While certainly more complicated than (2), condition (5) can be analyzed in

detail in some important cases, and provides transparent conditions for invasion of a rare social mutant

into a monomorphic population, allowing for comparison between theory and data.

We conclude this section commenting on the paper [10], in which the Taylor-Frank methodology was

applied in a situation in which the necessary differentiability is not satisfied. This paper considers groups

of individuals that act in ways that depend on the phenotypes of all the individuals in the group. The

fitness of each individual depends then on the actions of all the group members. Note that an instance of

this is the iterated public goods game, with the strategies that we discussed above, corresponding to (6).

From our discussion we know that differentiability fails in this case. Unaware of the limitations of the

Taylor-Frank method, the authors of [10] used it (in the fashion that will be explained and criticized in the

next section) in their equations (2) and (3). Their resulting borderline condition for evolutionary stability

of a trait is given by their equation (5). In the case of the iterated public goods game discussed above,

instead of the correct condition obtained from (5) (e.g., (10)), their condition reduces to the incorrect

c < bR, independently of the number of iterations T and of the threshold θ. (For the computation of the
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various partial derivatives in the approach of [10], keep in mind that we are interested in the evolutionary

stability of the equilibrium in which no one cooperates, i.e., all phenotypes are ȳ = 0. When θ > 0, in a

large group, if only one individual is assumed to be a cooperative mutant, this individual will cooperate in

the first round and not later, while the others will never cooperate. Using this observation for computing

the partial derivatives at this point, we obtain then for the quantities defined in [10], ρ = 0, their c is

identical to ours, while their b is ours divided by N − 1, where N is group size.) The fact that this

paper was published in a leading journal in evolutionary biology, and that apparently their mistaken

use of the Taylor-Frank method has not been noticed before highlights the relevance of pointing out the

need of differentiability in this method, and of emphasizing the alternative solution when differentiability

does not hold. (It is interesting that the direct application of the Taylor-Frank approach to (6) gives

the invasion condition c < bTR, while its application in the fashion of [10] gives the invasion condition

c < bR. Both are incorrect, but they are also different from each other. The reason for a difference

between them is that (6) lumps together the effect of all cooperators in the group on the focal individual,

while in [10] these are treated separately. Mathematically correct methods all produce the same answer

to a given problem, but incorrect methods may produce various different answers to a single question,

depending on the stage at which the mistake is made.)

Regression coefficients cannot be replaced by partial derivatives

Suppose that a focal individual is chosen at random from the population. Define y•, z• and w• = w(y•, z•)

as the random variables that are equal to the values that these quantities take for the focal individual.

The invasion condition wm − ww > 0 can be rewritten in the following form, with definitions that are

given below (see, e.g., [5, display 5], or [4, display 6.5]):

βw•,y•|z• + βz•,y• βw•,z•|y• > 0. (14)

Here the three β’s are defined as the numbers that together with the proper choice of the constants α′

and α′′ minimize

IE
(

(α′ + βz•,y• y• − z•)
2
)
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and

IE
((
α′′ + βw•,y•|z• y• + βw•,z•|y• z• − w•

)2)
. (15)

This definition in (15) says that βw•,y•|z• , βw•,z•|y• and α′′ are the numbers that make the function

f(y, z) = α′′ + βw•,y•|z• y + βw•,z•|y• z

the best linear approximation to the function w(y, z), in the sense that it minimizes the square of errors

weighted by probabilities over the values of y and z. (The definitions of the β’s can be rephrased in terms

of projections of random variables on appropriate Hilbert spaces. For instance, the minimization of (15)

is equivalent to the statement that the projection of the random variable w• onto the space of affine

functions of y• and z• is of the form α′′+βw•,y•|z• y•+βw•,z•|y• z•, for some constant α′′.) The condition

(14) is appealing because βz•,y• = R is the relatedness in the social environments, and therefore (14) is

equivalent to

βw•,y•|z• + Rβw•,z•|y• > 0. (16)

The β’s are usually referred to as regression coefficients, and we will use this terminology in what follows.

As we explain next, if w(y, z) is differentiable, and the distribution of values of (y•, z•) is narrowly

concentrated close to (ȳ, ȳ), then the regression coefficients in (16) are the same as the marginal fitnesses

derived using the Taylor-Frank method. Indeed, if w(y, z) is differentiable at (ȳ, ȳ), w(y, z) is well

approximated by a linear function of y and z, in the neighborhood of this point. This means that

w(y, z) = A− Cy +Bz + o(|y − ȳ|+ |z − ȳ|), (17)

with −C = ∂w/∂y|y=z=ȳ and B = ∂w/∂z|y=z=ȳ. Thus

w• = A− Cy• +Bz•

is a good approximation and hence the second optimization problem in (15) is solved by βw•,y•|z• = −C

and βw•,z•|y• = B, regardless of the details of the joint distribution of y• and z•. This approximation

becomes better and better, as δ → 0, and therefore (14) is well approximated by Hamilton’s condition

C < BR, in the limit of weak selection.
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But suppose now that w(y, z) is not differentiable at (ȳ, ȳ). In this case, we can even add the as-

sumption that the mutant types, with y = ȳ + δ, are rare, and still we will not have the approximate

equalities between the regression coefficients βw•,y•|z• and βw•,z•|y• and, respectively, the partial deriva-

tives ∂w/∂y|y=z=ȳ and ∂w/∂z|y=z=ȳ. To illustrate this point, suppose that w(y, z) is given by (6). Recall

that the partial derivatives at (ȳ, ȳ) = (0, 0) exist and are given by −c in the y direction, and bT in the

z direction. Compare now the following two scenarios. (1) The distribution of (y•, z•) is concentrated

in the region where z < θy. In this region w(x, y) is identical to the linear function w0 − cy + bz, and

therefore, in this case, βw•,y•|z• = −c, βw•,z•|y• = b. (2) The distribution of (y•, z•) is concentrated in

the region where z ≥ θy. In this region w(x, y) is identical to the linear function w0 + (−cy + bz)T , and

therefore, in this case, βw•,y•|z• = −cT , βw•,z•|y• = bT . These two observations are true even when the

distribution of (y•, z•) is concentrated mostly on (ȳ, ȳ) = (0, 0) (rare mutants) and fully concentrated in

a small neighborhood of this point (small δ > 0). It is then clear that the regression coefficients may be

quite different from the partial derivatives even under these assumptions.

For another example, suppose that w(y, z) is given by Fig 1. The assumptions that we made about

δ being small and the mutants being rare, implies that the distribution of (y•, z•) concentrates close to

the point (ȳ, ȳ) and on the segment {(y, z) : y = ȳ + δ, ȳ ≤ z ≤ ȳ + δ}. But the distribution over this

segment depends on demographics—it is determined by the distribution of the random variable X that

gives the number of mutants in the social environment of a mutant focal. Because w(y, z) is not well

approximated by a linear function of y and z in the relevant region, (even for very small values of δ), the

regression coefficients βw•,y•|z• and βw•,z•|y• will depend on the distribution of X in a substantial way.

To see why consider the function, v(x), shown in Fig 1. This function is very flat when x is close to 0

or 1, but is steeply increasing when x takes intermediate values. Now, compare three scenarios. (1) If

the distribution of X is concentrated close to x = 0, then we will have βw•,y•|z• close to ∂w/∂y|y=z=ȳ,

which is a negative number, and βw•,z•|y• close to 0. (2) If the distribution of X is concentrated close

to x = 1, then we will have βw•,y•|z• positive and again βw•,z•|y• close to zero. (3) If the distribution

of X is concentrated in intermediate values of x, then we will have βw•,y•|z• even more negative than

∂w/∂y|y=z=ȳ, and βw•,z•|y• large and positive.

The idea that when selection is weak and mutants are rare (vanishing trait variation in the population)
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we would have in good approximation

βw•,y•|z• = ∂w/∂y|y=z=ȳ

and

βw•,z•|y• = ∂w/∂z|y=z=ȳ

has been used to justify the Taylor-Frank method (e.g., [5, Box 6] and [4, as they justify deriving 6.7

from 6.5]). This idea is intuitive and appealing, but unfortunately it is not correct, unless w(y, z) is

differentiable in the relevant region.

Conclusions

Whether the Taylor-Frank method is appropriate to determine the stability of a monomorphic equilibrium

against invasion by a rare social allele, with a small mutation, depends on the biological facts describ-

ing how the fitness of a focal mutant individual depends on the fraction x of individuals in its social

environment that carry the same mutation. The method, as originally proposed in [6], can be properly

applied only when this dependence is linear. This is not the case, e.g., in repeated n-person games.

However, even when the Taylor-Frank direct fitness method is not appropriate as originally proposed, it

can be replaced by the more general direct fitness expression (4), and the corresponding generalization

of Hamilton condition for invasion (5).
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